• Title/Summary/Keyword: Flywheels

Search Result 16, Processing Time 0.02 seconds

A study for the development of knowledge based expert system for the design of flywheels (플라이 휘일의 설계를 위한 지식기반 전문가 시스템의 개발에 관한 연구)

  • 이경원;윤용산
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1138-1146
    • /
    • 1990
  • A knowledge-based expert system has been developed implementing the ambiguous process of conceptual design of flywheels in earlier design stage to assist the selection of proper flywheel types and dimensions. Knowledge for the flywheel design consists of the rules for conventional as well as super flywheels and other informations required for the design process. Those knowledges were extracted from literatures and some experts in the field. With these knowledges, an integrated knowledge based expert system was developed to help users with informations and facilities to design flywheels interactively using a commercial package of knowledge-based system called INSIGHT2 of backward chaining and proprietary package of forward chaining written in LISP language. The developed system consists of the knowledge base part and calculation park : the first one consists of main module and user level modules and the other one is to assist in analyzing the stress distribution in the flywheels and deciding the flywheel dimensions and specifications for various types of flywheels using proper data bases and graphic facilities. With this flywheel design software, several examples were tried generating acceptable design results.

Analytical crack growth in unidirectional composite flywheel

  • Lluis Ripoll;Jose L. Perez-Aparicio;Pere Maimi;Emilio V. Gonzalez
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.183-197
    • /
    • 2023
  • Scarce research has been published on crack propagation fracture of flywheels manufactured with carbon fiber-reinforced polymers. The present work deals with a calculation method to determine the conditions for which a crack propagates in the axial direction of the flywheel. The assumptions are: flywheels made with just a single thick ply or ply clustering laminates, oriented following the hoop direction; a single crack is analyzed in the plane defined by the hoop and axial directions; the crack starts close to one of the free edges; its axial length is initially large enough so that its tip is far away from that free edge, and the crack expands the entire circumferential perimeter and keeps its concentric position. The developed method provides information for a good design of flywheels. It is concluded that a fracture-based crack propagation criterion generally occurs at a lower speed than a stress-based criterion. Also, that the evolution of failure with thickness using the fracture criterion is exponential, demonstrating that thin flywheels are relatively not sensitive to crack propagation, whereas thick ones are very prone.

Are Flywheels Right for Rail?

  • Read, M.G.;Smith, R.A.;Pullen, K.R.
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.139-146
    • /
    • 2009
  • Vehicle braking in non-electrified rail systems wastes energy. Advanced flywheel technology presents a way to capture and reuse this braking energy to improve vehicle efficiency and so reduce the operating costs and environmental impact of diesel trains. This paper highlights the suitability of flywheels for rail vehicle applications, and proposes a novel mechanical transmission system to apply regenerative braking using a flywheel energy storage device. A computational model is used to illustrate the operation and potential benefits of the energy storage system.

  • PDF

A Study on the Hydraulic Pump/Motor Control in the Flywheel Hybrid Vehicle

  • Oh, Boem-Sueng;Ahn, Kyoung-Kwan;Cho, Yong-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.307-311
    • /
    • 2004
  • In this study, a novel hybrid vehicle is proposed. The vehicle has a flywheel-engine hybrid system. Flywheels are more effective as energy charge systems than electric batteries in a respect of output power density. However, transmissions to effectively drive flywheels are very complex systems such as CVTs (Continuously Variable Transmissions). In the proposed hybrid vehicle, Constant Pressure System is employed, which is hydraulic power transmission. Using Constant Pressure Systems, hydraulic CVTs are easily realized with variable displacement pumps/motors. In this paper, firstly, the proposed flywheel hybrid vehicle making use of Constant Pressure System is described. Secondly, fuel consumption characteristics of the flywheel hybrid vehicle are experimentally examined with the stationary test facility, which employs a flywheel as a load emulating vehicle inertia. Finally, the experimental results and discussions are described. Fuel consumption of 26km/L is expected for 10 mode driving schedule with vehicle mass of 1500kg.

  • PDF

Precise Braking Torque Control for Momentum Flywheels Based on a Singular Perturbation Analysis

  • Zhou, Xinxiu;Su, Dan
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.953-962
    • /
    • 2017
  • Momentum flywheels are widely applied for the generation of small and precise torque for the attitude control and inertial stabilization of satellites and space stations. Due to its inherited system nonlinearity, the tracking performance of the flywheel torque/speed in dynamic/plug braking operations is limited when a conventional controller is employed. To take advantage of the well-separated two-time-scale quantities of a flywheel driving system, the singular perturbation technique is adopted to improve the torque tracking performance. In addition, the composite control law, which combines slow- and fast- dynamic portions, is derived for flywheel driving systems. Furthermore, a novel control strategy for plug braking dynamics, which considers couplings between the Buck converter and the three-phase inverter load, is designed with easy implementation. Finally, experimental results are presented to demonstrate the correctness of the analysis and the superiority of the proposed methods.

A Study on Design Parameters of Dual Mass Flywheel System (Dual Mass Flywheel 시스템의 설계 파라미터에 관한 연구)

  • 송준혁;홍동표;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.90-98
    • /
    • 1998
  • A Dual Mass Flywheel(D.M.F.) system is an evolution to the reduction of torsional vibration and impact noise occurring in powertrain when a vehicle is either moving or idling. The D.M.F. system has two flywh-eels, which is different from the conventional clutch system. One section belongs to the mass moment of in-ertia of the engine-side. The other section increases the mass moment of inertia of the transmission-side. These two masses are connected via a spring/damping system. This reduces the speed at which the dreaded resonance occurs to below idle speed. Since 1984m D.M.F. system has been developed. However, the processes of development of D.M.F. system don't have any difference from the trial and error method of conventional clutch system. This paper present the method for systematical design of D.M.F. system with dimensionless design varia-bles of D.M.F. system, mass ratio between two flywheels, natural frequency rate of two flywheels, and visc-osity coefficient. And expermental results are used to prove these theoretical results.

  • PDF

Structural Integrity Evaluation for Interference-fit Flywheels in Reactor Coolant Pumps of Nuclear Power Plants

  • Park June-soo;Song Ha-cheol;Yoon Ki-seok;Choi Taek-sang;Park Jai-hak
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1988-1997
    • /
    • 2005
  • This study is concerned with structural integrity evaluations for the interference-fit flywheels in reactor coolant pumps (RCPs) of nuclear power plants. Stresses in the flywheel due to the shrinkage loads and centrifugal loads at the RCP normal operation speed, design overspeed and joint-release speed are obtained using the finite element method (FEM), where release of the deformation-controlled stresses as a result of structural interactions during rotation is considered. Fracture mechanics evaluations for a series of cracks assumed to exist in the flywheel are conducted, considering ductile (fatigue) and non-ductile fracture, and stress intensity factors are obtained for the cracks using the finite element alternating method (FEAM). From analysis results, it is found that fatigue crack growth rates calculated are negligible for smaller cracks. Meanwhile, the material resistance to non-ductile fracture in terms of the critical stress intensity factor (K$_{IC}$) and the nil-ductility transition reference temperature (RT$_{NDT}$) are governing factors for larger cracks.

A Novel Energy Storage System based on Flywheel for Improving Power System Stability

  • Wu, Jinbo;Wen, Jinyu;Sun, Haishun;Cheng, Shijie
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.447-458
    • /
    • 2011
  • In this paper, a novel flywheel energy storage device, called the flexible power conditioner, which integrates both the characteristics of the flywheel energy storage and the doubly-fed induction machine, is proposed to improve power system stability. A prototype is developed and its principle, composition, and design are described in detail. The control system is investigated and the operating characteristics are analyzed. The test results based on the prototype are presented and evaluated. The test results illustrate that the prototype meets the design requirement on power regulation and starting, and provides a cost-effective and effective means to improve power system stability.

Dual Mass Flywheel 시스템의 설계파라미터에 관한 연구

  • 송준혁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.167-172
    • /
    • 1996
  • A Dual Mass Flywheel system is a evolution to the reduction of torsional vibration and impact noise occuring in powertrain when a vehicle is eit-her moving or idling. The name already explains what it is : The mass of the conventional single mass flywheel is divided. One section continues to belong to the mass moment of inertia of the engine-side. The ot-her section increass the mass moment of inertia of the transmission-side. The two masses are connected via a spring /damping system. This reduces the speed at which the dreaded resonance occurs to below idle speed. Since 1984 Dual Mass Flywheel has been de-veloped again and again. But the prosidures of de-velopment of D.M.F system didn't have had differe-nce from conventional clutch system's trial and err-or This paper presents the method for systematical design of D.M.F system with demensionless design variables of D.M.F system mass ratio between two flywheels λ. natual frequency rate of two flywheel s, ${\gamma}$and viscosity coefficient ζ. And experimental re-sults are used to prove these theoretical results.

  • PDF

Performance Simulation for a Dual Mass Flywheel using Discrete Model of Arcspring (아크스프링의 이산화 모델을 사용한 DMF 성능 시뮬레이션)

  • 김태현;김민성;송한림;어순기;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.146-153
    • /
    • 2004
  • This paper presents a discrete analysis approach to investigate the performance of dual mass flywheel (DMF). In the discrete analysis, arcspring installed between the flywheels is modeled as N- discrete elements. Each element consists of mass, spring and nonlinear friction element. LuGre friction model is used to describe nonlinear friction characteristic. Based on the dynamic models of the DMF, clutch, engine, manual transmission and vehicle, a DMF performance simulator is developed using MATLAB Simulink. Simulation results of the engine speed, driveshaft torque and vehicle velocity are compared with test results. It is found that the discrete DMF model describes the vehicle behavior closely, especially during the clutch actuation period.