• 제목/요약/키워드: Flywheel system

검색결과 221건 처리시간 0.023초

플라이휠 에너지 저장장치 회전체계의 동역학적 설계 및 해석 (Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device)

  • 최상규;김영철;경진호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.283-289
    • /
    • 1997
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analyses and prediction of its dynamic behavior to secure the operating reliability. Rotordaynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness of 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favorable for smooth operation of the system around the 2nd critical speed.

  • PDF

Regenerative Energy Characteristics of Battery and Supercapacitor in a PEMFC Hybrid System

  • Kim, Byeong Heon;Wei, Qingsheng;Oh, Byeong Soo
    • 동력기계공학회지
    • /
    • 제21권4호
    • /
    • pp.5-17
    • /
    • 2017
  • This study focuses on the application of the PEM Fuel Cell(PEMFC) hybrid system, which includes a regenerative braking system with supercapacitor(SC) and battery. The purpose of this study is to evaluate the characteristics of regenerative energy and to propose solutions to increase regenerative energy via vehicle simulation. To achieve this target, we set the rated motor speed to 3,000/2,500/2,000 rpm. Because the flywheel is directly connected to the motor, the generator activates regenerative braking by using the rotational momentum of the flywheel when the flywheel reaches the set speed after the motor stops. We could then measure the characteristics of regenerative braking of voltage, current, power, energy change, etc. Meanwhile, we calculate the storage efficiency of the SC or the battery. Our results show that the SC stores 18% of the regenerative energy, while battery stores 15% of the energy. Since the regenerative energy decreases with the decrease of the motor rotating speed that 5,027 J and 2,915 J are restored at 3,000 and 2,500 rpm, respectively. The experimental results also prove that regenerative braking energy is able to be obtained if and only if the speed of flywheel is over 2,500 PRM, and the efficiency of the system can be further improved.

플라이휘일 하이브리드 차량의 다경로 동력전달장치 연구 (A Study on Multi Pass Transmission System for a Flywheel Hybrid Vehicle)

  • 송한림;김현수
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.106-116
    • /
    • 1997
  • In this paper, using MATLAB SIMULINK, a generalized design methodology was suggested for multi pass transmission(MPT) by classifying the vehicle power train as prime mover, MPT and vehicle dynamics. This approach enables a designer to investigate the influence of each transmission component by simple combination of system components without changes of overall program. Using the design methodology, a MPT consisting of CVT, 2, clutches and reduction gears was designed for a braking energy regenerative flywheel hybrid vehicle. The CVT is essential in order to connect the engine and flywheel speed with the vehicle speed. For the purpose of smooth clutch operation, control algorithm was suggested by introducing dead zone for the clutch engagement. Using the SIMULINK model, performance of the flywheel hybrid vehicle with MPT was investigated. It was observed from the simulation results that the MPT vehicle showed better fuel economy, 47% than that of AT vehicle, 27% than that of CVT vehicle for ECE-15 driving cycle. Especially destinct fuel efficiency improvement was obtained for city driving cycle requiring more frequent stop and start.

  • PDF

벡터제어 유도전동기를 이용한 축소형 관성 시뮬레이터 (A Miniature Inertia Simulator using Vector Controlled Induction Motor)

  • 김길동;박현준;한영재;한경희;조정민
    • 전력전자학회논문지
    • /
    • 제7권1호
    • /
    • pp.74-80
    • /
    • 2002
  • 철도차량용 추진시스템은 안전성과 신뢰성 때문에 성능을 평가해야만 한다. 일반적으로 Flywheel Type시험방법은 시험설비로 널리 사용되고 있다 그러나 Flywheel에 의해 생기는 기계적 관성은 변하기 어렵고 실제적인 주행저항을 표현할 수 없다. 본 연구는 다양한 차량부하의 개발에 초점을 두고 수행되었다. 그렇기 때문에 실제적인 차량 부하 특성을 얻기 위해 벡터모터에 의해 제어되는 다양한 차량부하를 사용하는 방법을 제안하였고 컴퓨터 시뮬레이션을 통해 결과를 확인하였다.

Precise Braking Torque Control for Momentum Flywheels Based on a Singular Perturbation Analysis

  • Zhou, Xinxiu;Su, Dan
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.953-962
    • /
    • 2017
  • Momentum flywheels are widely applied for the generation of small and precise torque for the attitude control and inertial stabilization of satellites and space stations. Due to its inherited system nonlinearity, the tracking performance of the flywheel torque/speed in dynamic/plug braking operations is limited when a conventional controller is employed. To take advantage of the well-separated two-time-scale quantities of a flywheel driving system, the singular perturbation technique is adopted to improve the torque tracking performance. In addition, the composite control law, which combines slow- and fast- dynamic portions, is derived for flywheel driving systems. Furthermore, a novel control strategy for plug braking dynamics, which considers couplings between the Buck converter and the three-phase inverter load, is designed with easy implementation. Finally, experimental results are presented to demonstrate the correctness of the analysis and the superiority of the proposed methods.

정압력원을 이용한 에너지 절감 유압 시스템에 관한 연구 (A Study on the Energy Saving Hydraulic System Using Constant Pressure System)

  • 조용래;윤종일;윤주현;이민수;조우근;윤홍수;안경관
    • 유공압시스템학회논문집
    • /
    • 제4권1호
    • /
    • pp.7-12
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

  • PDF

정압력원을 이용한 에너지 절감 유압 시스템에 관한 실험적 연구 (An Experimental Study on the Energy Saving Hydraulic System using Constant Pressure System)

  • 조용래;안경관;윤주현;이민수;조우근;윤홍수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1081-1086
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

  • PDF

초전도베어링을 이용한 300 Wh급 플라이휠 에너지저장장치의 고속운전시험 (High Speed Operating Test of a 300Wh Flywheel Energy Storage System Using Superconductor Bearings)

  • 김영철;최상규;성태현;이준성;한영희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.514-520
    • /
    • 2001
  • A 300Wh class flywheel energy storage system using high Tc superconductor bearings(HTC SFES) is being developed by KIMM and KEPRI. HTC SFES consists of a flywheel rotor, superconductor bearings, a motor/generator and its controller, touch-down bearings, vacuum chamber, etc. Stiffness and damping values of superconductor bearings were experimentally estimated to be 67,700N/m and 29Ns/m respectively. The present HTC SFES was designed to have maximum operating speed of 33000 rpm, which is far above 2 rigid body mode critical speeds of 645rpm and 1,275rpm. Leaf-spring type touch-down bearing were utilized to have the system pass safely through the system critical speeds. It has been experimentally verified that the system can run stably up to 28,000 rpm so that HTC SFES is now expected to reach up to its maximum design speed of 33,000rpm without any difficulties. The Halbach array motor & generator has also been proven its effectiveness on transferring electrical energy to a rotaing composite flywheel in kinetic form.

  • PDF

정압력원을 이용한 에너지 절감 유압 제어 시스템에 관한 실험적 연구 (An Experimental Study on the Energy Saving Hydraulic Control System Using Constant Pressure System)

  • 조용래;안경관;김정수;윤주현
    • 한국정밀공학회지
    • /
    • 제24권5호
    • /
    • pp.68-76
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

35 kWh급 초전도 플라이휠 에너지 저장 시스템 설계 및 제작 (Design and Construction of 35 kWh Class Superconductor Flywheel Energy Storage System)

  • 정세용;한영희;박병준;한상철
    • Progress in Superconductivity
    • /
    • 제14권1호
    • /
    • pp.60-65
    • /
    • 2012
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. A 35 kWh class SFES module was designed and constructed as part of a 100kWh/1MW class SFES composed of three 35 kWh class SFES modules. The 35 kWh class SFES is composed of a main frame, superconductor bearings, a composite flywheel, a motor/generator, electro-magnetic bearings, and a permanent magnet bearing. The high energy density composite flywheel is levitated by the permanent magnet bearing and superconductor bearings, while being spun by the motor/generator, and the electro-magnetic bearings are activated while passing through the critical speeds. Each of the main components was designed to provide maximum performance within a space-limited compact frame. The 35 kWh class SFES is designed to store 35 kWh, with a 350 kW charge/discharge capacity, in the 8,000 ~ 12,000 rpm operational speed range.