• 제목/요약/키워드: Flywheel system

검색결과 221건 처리시간 0.033초

플라이휠 에너지 저장 장치용 복합재 로터 개발 (Development of a Composite Rotor for Flywheel Energy Storage System)

  • 김명훈;한훈희;김재혁;김성종;하성규
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.169-172
    • /
    • 2005
  • A flywheel system is an electromechanical energy storage device that stores energy by rotating a rotor. The rotating part, supported by magnetic bearings, consists of the metallic shaft, composite rims of fiber-reinforced materials, and a hub that connects the rotor to the shaft. The delamination in the fiber wound composite rotor often lowered the performance of the flywheel energy storage system. In this work, an advanced hybrid composite rotor with a split hub was designed to both overcome the delamination problem in composite rim and prevent separation between composite rim and metallic shaft within all range of rotational speed. It was analyzed using a three-dimensional finite clement method. In order to demonstrate the predominant perfom1ance of the hybrid composite rotor with a split hub, a high spin test was performed up to 40,000 rpm. Four radial strains and another four circumferential strains were measured using a wireless telemetry system. These measured strains were in excellent agreement with the FE analysis. Most importantly, the radial strains were reduced using the hybrid composite rotor with a split hub, and all of them were compressive. As a conclusion, a compressive pressure on the inner surface of the proposed flywheel rotor was achieved, and it can lower the radial stresses within the composite rotor, enhancing the performance of the flywheel rotor.

  • PDF

플라이휠 시스템의 에너지 저장/발생시 동역학적 안전성연구 (A Study on the Stability of the Flywheel System During the Storage and Generation of Energy)

  • 장웅재;이수훈
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.151-156
    • /
    • 2000
  • A vibration in a high-speed machine may lead to machinery malfunction and even catastrophic failure. So solving the vibration problem is a fundamental requirement for the stability of the high-speed machine. The flywheel energy storage system using superconducting magnetic bearings is a device to store electrical energy as rotational kinetic energy by motor and to convert it to electrical by generator when necessary. The high-speed rotating flywheel has large amplitude at a critical speed. And it has an unstable behavior by the electric torque at the first stage of the energy generation. In this paper, the stability analysis is performed with an analytical model and equations of motion-which is considered the effect of the electric torque-to identify the stable driving condition and the dynamic behavior.

  • PDF

플라이휠 에너지 저장 시스템용 양측식 영구자석 동기 전동/발전기의 착자 형태에 따른 특성 비교 (Characteristic comparison of double-side PMSM/G according to magnetization pattern for flywheel energy storage system)

  • 장석명;최지환;유대준;성소영;한상철;이정필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1021-1022
    • /
    • 2011
  • This paper presents the double side PM synchronous motor/generator for core loss reduction in flywheel energy storage system. The use of double PM rotor causes the elimination of core loss in no-load state of machine. Because flywheel rotational speed is reduced by core loss, double PM rotor is very effective in flywheel system. This paper suggests two types of double side PM rotor, Halbach magnetized array and parallel magnetized array. And characteristic comparison according to thickness of rotor back core is performed.

  • PDF

플라이휠 에너지 저장장치 자기부상 안정성 시뮬레이션 및 실험분석 (Simulation and Experimental Analysis of Magnetic Levitation Relative Stability for the Flywheel Energy Storage)

  • 박병철;정세용;한상철;이정필;한영희;박병준
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1605-1610
    • /
    • 2010
  • In this paper, the relative stability of magnetic bearing system for the flywheel energy storage is evaluated using both simulation and experimental analysis. We make the simulation model for the magnetic bearing flywheel system using the rigid body shaft model. According to international standard ISO 14839-3, We experimentally analyzed the relative stability of magnetic bearing system. Additionally using both the simulation model and experimental tests, Phase margin and Gain margin is acquired through Nyquist plot.

유도기를 이용한 플라이휠 에너지 저장 및 재생 시스템 제어 기법 (A Control Strategy for Flywheel Energy Storage / Recovery System with Induction Machine)

  • 손장경;이홍희;노의철;김흥근;전태원
    • 전력전자학회논문지
    • /
    • 제10권5호
    • /
    • pp.494-500
    • /
    • 2005
  • 본 논문에서는 플라이휠에너지를 이용한 다이나믹 UPS 시스템에서 유도기를 이용하여 플라이휠의 에너지를 저장 및 재생하는 시스템 제어 기법을 제시하였다. 유도발전기의 슬립주파수 제어와 벡터제어 기법의 특성을 비교하고, 또한 벡터제어 기법을 사용 시 전동 모드에서 발전 모드로의 전환할 때 직류링크 커패시터 전압의 과도 특성을 개선하는 기법을 개발하였다. 32비트 DSP를 사용한 실험을 통하여 이 기법의 성능을 확인하였다.

Energy Saving Hydraulic Control System using Hydraulic Pump/Motor

  • Yongrae Cho;Bumseung Oh;Kyoungkwan Ahn;Soonyong Yang;Lee, Byungryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.66.1-66
    • /
    • 2002
  • Today it becomes a serious problem to exhaustion of a fossil fuel and air pollution by exhaust gases from road vehicles for environment preservation. To solve this problem, the developments of a hybrid vehicle have been processed for the purpose of reducing pollution and energy-savings. By the way, flywheel hybrid vehicle using variable pump/motor was proposed as one feasible hybrid system in place of hybrid vehicle system by the conventional storage battery. The proposed flywheel hybrid vehicle is composed of an accumulator or a flywheel as the energy generation and storage source and three variable hydraulic pump/motor as the energy transfer device. Flywheel has the characteristic of high...

  • PDF

에너지 저장시스템용 복합재 플라이휠 로터의 설계 (Design of a Composite Flywheel Rotor for Energy Storage System)

  • 정희문;최상규;하성규
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1665-1674
    • /
    • 1995
  • An optimum design has been performed to maximize specific energy (SED) of composite flywheel rotor for energy storage system. The flywheel rotor is assumed to be an axisymmetric thick laminated shell with a plane strain state for structural analysis. For the structural analysis the centrifugal force is considered and the stiffness matrix equation was derived for each ring considering the interferences between the rings. The global stiffness matrix was derived by integrating the local stiffness matrix satisfying the conditions of force and displacement compatibilities. Displacements are then calculated from the global stiffness matrix and the stresses in each ring are also calculated. 3-D intra-laminar quadratic Tsai-Wu criterion is then used for the strength analysis. An optimum procedure is also developed to find the optimal interferences and lay up angle to maximize SED using the sensitivity analysis.

Comparison of Flywheel Systems for Harmonic Compensation Based on Wound/Squirrel-Cage Rotor Type Induction Motors

  • Kim, Yoon-Ho;Jeong, Yeon-Suk;Jeong, Yeon-Suk
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.127-132
    • /
    • 2001
  • This paper describes two different systems which can compensate harmonic currents generated in a power system. As non-linear loads increase gradually in industry fields, harmonic current generated in the electric power network system also increases. Harmonic current makes a power network current distorted and generates heat, vibration and noise in the power machinery. Many approaches have been applied to compensate harmonic currents generated in the power system. Among various approaches, in this paper, two kinds are compared and evaluated. They are flywheel compensators bases on secondary excitation of WRIM(wounded rotor induction motor) and SCIM(squirrel cage induction motor). Both systems have a common structure. They use a flywheel as an energy storage device and use PWM inverters. The main differences are the size and rating of the converter used.

  • PDF

전자기력을 고려한 플라이휠 에너지 저장시스템용 전동발전기 구조해석 (Structural Analysis considering Electromagnetic Force on Motor/Generator for Flywheel Energy Storage System)

  • 고우식;류동완;오시덕;성태현;한상철;한영희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.485-490
    • /
    • 2004
  • Flywheel Energy Storage System(FESS) consists of a high speed flywheel with an integral motor/generator suspended on non contact bearings and in an evacuated housing. Permanent magnet machines as the FESS motor/generator are a popular choice, since there are no excitation losses which means substantial increase in the efficiency. In this paper, the structural design method of rotor retainer for a high speed motor/generator are presented.

  • PDF