• Title/Summary/Keyword: Flyash pellets

Search Result 2, Processing Time 0.021 seconds

Preparation of Macroporous Pellet from Industrial Waste Flyash by Foaming Method

  • Park, Jai-Koo;Kim, Hyun-Jung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.638-643
    • /
    • 2001
  • Macroporous pellets were prepared from industrial waste flyash by foaming method. The surface and inside of flyash pellets, the shape was almost spherical and the average size was about 3 mm, were composed of the spherical pores interconnected through windows. The controlling of pellet size was conducted with solid loading. The flyash pellets with different relative density were characterized for porosity, average pore size, and specific surface area. As results, most physical properties had a tendency to increase as relative density decreased - extension ratio increased. The correlation between relative density and other properties was inspected through microstructural features evaluated by SEM. As a result, high porosity and high specific surface area were estimated to result from the superior connectivity between pores.

  • PDF

Charge/discharge Properties of Flyash as a function of Electrolyte for Lithium Rechargeable Battery (전해질 종류에 따른 Flyash의 리튬 2차전지의 충방전 특성)

  • 송희웅;김종욱;이경섭;박복기;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.362-365
    • /
    • 1999
  • The electrochemical properties of flyash obtained from combustion of fuel in fossil power plants and their performance as anode material of secondary battery have been investigated Various flysh pellets molded at various molding pressure have been used as anode lithium secondary battery. The best Performance was achieved when flyash pellet molded at pressure of 400kgf/$\textrm{cm}^2$ is utilized, that is, charge capacity of 300kgf/$\textrm{cm}^2$ and Coulombic efficiency of larger than 95% have been achieved. In addition, this battery exhibited good cycling performance. Considering these results, we predicted that utilization of the flyash as anode material and polyaniline conducting polymer as cathode material in a secondary will show capacity of 300mAh/g and Coulombic efficiency of higher than 95%.

  • PDF