• 제목/요약/키워드: Fly-ash(class F)

검색결과 43건 처리시간 0.016초

침지된 해수 온도 및 결합재 혼합비에 따른 비소성 시멘트의 강도 특성 (Properties of Non-Sintered Cement Pastes Immersed in Sea Waters at Different Temperatures for Binders Mixed with Different Ratios)

  • 전유빈;김태완
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권5호
    • /
    • pp.75-84
    • /
    • 2016
  • 본 연구에서는 해수 침지 온도에 따른 비소성 시멘트 경화체의 물리적 및 역학적 특성에 대해 비교 분석하였다. 비소성 시멘트는 플라이애시와 고로슬래그미분말을 6:4, 7:3 및 8:2의 중량비로 혼합하여 수산화나트륨과 액상규산나트륨으로 알칼리 활성화 하여 제작되었다. 알칼리 활성화를 위한 활성화제는 플라이애시와 고로슬래그미분말을 혼합한 중량의 5%로 하였으며, 화학첨가제로 탄산칼슘이 사용되었다. 본 연구에서는 알칼리 활성화된 시험체들을 3가지 다른 온도($5^{\circ}C$, $15^{\circ}C$$25^{\circ}C$)의 해수에 각각 침지 시킨 후, 침지 재령 3일 및 28일에 대해 경화체의 압축 강도, 밀도 및 흡수율을 측정하였으며, 해수 침지 재령 28일에 대해서는 XRD 및 SEM 시험 분석을 실시하였다. 또한, 해수 침지 재령 28일에 대하여 시험체들 내의 수용성 염화물(자유염화물) 및 산-가용성 염화물(총염화물) 함유량을 측정하여 분석하였다. 본 연구에서 해수온도별로 침지시킨 플라이애시-고로슬래그미분말 혼합 알칼리 활성화 경화체는 플라이애시 혼합률이 증가함에 따라 밀도 감소, 흡수율 증가 및 강도가 감소하는 경향을 나타냈다. 또한 플라이애시 혼합률이 증가할수록 시험체 내의 수용성 염화물 및 산-가용성 염화물의 양이 증가하는 것으로 나타났다. 본 연구에서 제작된 플라이애시-고로슬래그미분말 혼합 알칼리 활성화 경화체는 노출된 해수 온도 영향으로 인한 강도 차이는 없는 것으로 판단되며, 플라이애시와 고로슬래그미분말의 혼합중량비에 따라 강도 특성이 달라지는 것으로 나타났다.

전기전도도 시험방법을 활용한 산업부산물 포졸란재료의 반응성 평가 (Evaluation on Reactivity of By-Product Pozzolanic Materials Using Electrical Conductivity Measurement)

  • 최익제;김지현;이수용
    • 한국건축시공학회지
    • /
    • 제16권5호
    • /
    • pp.421-428
    • /
    • 2016
  • 본 연구에서는 전기전도도 시험방법을 이용하여 다양한 산업부산물재료의 포졸란 반응성을 평가할 수 있는 대안을 제안하고자 하였다. 실험에 사용된 재료는 일반적으로 포졸란 재료로 활용되고 있는 산업부산물 플라이애시(class F, C) 2종, 실리카퓸(densified, undensified) 2종, 메타카올린과 포졸란 반응성이 정량적으로 증명되지 않은 산업부산물인 벤토나이트, 그라스울, 세라믹을 활용하여 포졸란 반응성을 측정 하였다. 각 재료가 $40^{\circ}C$ 포화수산화칼슘 수용액에 침지된 이후의 전기전도도의 변화를 관찰하였으며, $450{\sim}500^{\circ}C$에서 관찰된 수산화칼슘의 분해량을 통해 포졸란 반응성을 교차 검증하였다. 28일 압축강도 또한 포졸란 반응에 의한 역학적 성능의 개선여부를 검증하기 위해 활용되었다. 실험결과에 따르면, 전기전도도 최대값과 4시간후의 전기전도도의 차이를 활용하여 포졸란 반응성을 평가하는 것이 적절하다고 나타났다. 이러한 방법을 활용할 경우 수산화칼슘 함유량에 근거한 포졸란 반응성 평가와 매우 유사한 결과를 얻을 수 있었으며, 28일 압축강도 측정을 통해 얻은 결과와도 큰 차이를 보이지 않아, 전기전도도 시험법이 포졸란 반응성이 증명되지 않은 재료의 포졸란 반응성평가에도 충분히 활용될 수 있는 것으로 나타났다.

Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders

  • Vance, Kirk;Aguayo, Matthew;Dakhane, Akash;Ravikumar, Deepak;Jain, Jitendra;Neithalath, Narayanan
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권4호
    • /
    • pp.289-299
    • /
    • 2014
  • Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-a'-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution ($SiO_2$-to-$Na_2O$ ratio or $M_s$ of 1-2) to provide a total alkalinity of 0.05 ($Na_2O$-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on $M_s$, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.