• 제목/요약/키워드: Fly

검색결과 3,113건 처리시간 0.023초

Mechanochemical 표면처리한 Fly Ash 혼화 Concrete의 제조 (Fabrication of Concrete Containing Mechanochemically Surface Treated(MST) Fly Ash)

  • 이형직;구자훈;유인상;송두규;정해경;권혁병;윤상옥;이형복;이홍림
    • 한국세라믹학회지
    • /
    • 제39권2호
    • /
    • pp.135-144
    • /
    • 2002
  • 채취 그대로의 fly ash(As Received Fly Ash, ARFA)90 wt%와 cement 10 wt%의 혼합물 ball milling 함으로서 mechanochemical processing에 의해 표면 처리한 fly ash(Mechanochemically Surface Treated Fly Ash, MSTFA)를 사용하여 fly ash 혼화 concrete의 강도 증진을 위한 연구를 수행하였다. ARFA에 ball-milling하여 particle size reduction만 발생시킨 fly ash(Ball-mill Processed Fly Ash, BPFA)혼화시의 공시체와 비교하여 동일한 fly ash의 혼화량, 동일한 재령의 압축강도 및 미세구조의 관점에서 고찰하였다. MSTFA를 혼화한 concrete 공시체의 압축강도는 ARFA를 혼화한 것보다 10-20%, BPFA를 혼화한 것보다는 2-7 wt% 상승한 값을 나타내었다. 이 같은 강도 상승은 MSTFA와 cement의 각 입자의 서로에 대한 친화성이 증대되며 이로 인하여 수화물 생성시 cement와 fly ash 입자간의 결합력이 더욱 증가하게 되어 압축강도가 증가하는 것으로 고려된다.

소성블릭 제조를 위한 무연탄 석탄회의 특성 연구 (A Study on the Characterization of Anthracite Fly Ash for the Fabrication of Calcinated Brick)

  • 유연태;김병규;최영윤;남철우;이용석;김천순
    • 자원리싸이클링
    • /
    • 제13권2호
    • /
    • pp.16-23
    • /
    • 2004
  • 무연탄 석탄회의 재활용 향상을 위하여, 무연탄 석탄회의 특성을 유연탄 석탄회의 특성과 비교하였다. 특히, 무연탄 석탄회를 소성블릭의 원료로 활용하기 위하여, 무연탄 석탄회의 고온 특성이 열분석, 고온현미경 및 X선 회절 분석에 의해 조사되었다. 무연탄석탄회의 $A1_2$$O_3$/SiO$_2$ 비는 평균 0.62이고 유연탄 석탄회는 $A1_2$$O_3$/$SiO_2$ 비가 0.34로 무연탄 석탄회 중 A1$_2$$O_3$ 성분의 조성이 높았다. 무연탄 석탄회 중 $SiO_2$는 석탄회 중의 $A1_2$$O_3$와 반응하여 $1000^{\circ}C$의 고온에서 새로운 뮬라이트 결정을 형성하였고, 그 결과 우수한 내화도를 나타내었다. 또한, 무연탄 석탄회의 첨가량 변화에 따른 혼합시료의 압출 성형 특성을 평가하기 위하여 고령토와의 혼합시료가 제조되었고, 무연탄 석탄회 첨가 성형 벽돌의 압출속도는 혼합시료 중 석탄회의 첨가량이 증가할수록 감소하였으며, 압출 성형가능한 무연탄 석탄회의 최대 첨가량은 60wt%이었다.

Sintering process에 의한 MSWI fly ash를 혼합한 일차점토(一次粘土)와 적황토(赤黃土) 공시체(公試體)의 특성(特性) (Characteristics of Specimens Made from Primary Clay and Red Hwangto with MSWI Fly Ash by Sintering Process)

  • 유승철;권문선;박상민
    • 자원리싸이클링
    • /
    • 제19권2호
    • /
    • pp.10-18
    • /
    • 2010
  • 본 연구는 소성공정으로 MSWI fly ash를 혼합한 일차점토와 적황토 공시체의 특성을 알아보기 위하여 진행되었다. 최대 20 wt% MSWI fly ash를 혼합한 공시체는 SEM, UTM, ICP 등의 방법으로 분석되었으며, 그 결과 $P_{10}$공시체는 휨강도가 증가하였고, $R_5$공시체는 압축강도와 휨강도가 증가하였다. 또한 중금속 용출량도 기준치를 만족하였다. 이것은 MSWI fly ash가 소성공정에 의한 벽돌제조에서 기존 재료의 부분대체에 적합하다는 것을 나타내는 것이다.

Prediction of fly ash concrete compressive strengths using soft computing techniques

  • Ramachandra, Rajeshwari;Mandal, Sukomal
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.83-94
    • /
    • 2020
  • The use of fly ash in modern-day concrete technology aiming sustainable constructions is on rapid rise. Fly ash, a spinoff from coal calcined thermal power plants with pozzolanic properties is used for cement replacement in concrete. Fly ash concrete is cost effective, which modifies and improves the fresh and hardened properties of concrete and additionally addresses the disposal and storage issues of fly ash. Soft computing techniques have gained attention in the civil engineering field which addresses the drawbacks of classical experimental and computational methods of determining the concrete compressive strength with varying percentages of fly ash. In this study, models based on soft computing techniques employed for the prediction of the compressive strengths of fly ash concrete are collected from literature. They are classified in a categorical way of concrete strengths such as control concrete, high strength concrete, high performance concrete, self-compacting concrete, and other concretes pertaining to the soft computing techniques usage. The performance of models in terms of statistical measures such as mean square error, root mean square error, coefficient of correlation, etc. has shown that soft computing techniques have potential applications for predicting the fly ash concrete compressive strengths.

Comparison of ASR Mitigation Methodologies

  • Islam, Mohammad S.
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권4호
    • /
    • pp.315-326
    • /
    • 2014
  • This study evaluates the dosages of Class F fly ash, lithium nitrate and their combinations to suppress the excessive expansion caused by alkali-silica reactivity (ASR). In order to serve the proposed objective, the mortar bar specimens were prepared from (1) four dosages of Class F fly ash, such as 15, 20, 25 and 30 % as a partial replacement of Portland cement, (2) up to six dosages of lithium nitrate, such as lithium-to-alkali molar ratios of 0.59, 0.74, 0.89, 1.04, 1.19 and 1.33, and (3) the combination of lithium salt (lithium-to-alkali molar ratio of 0.74) and two dosages of Class F fly ash (15 and 20 % as a partial replacement of Portland cement). Percent contribution to ASR-induced expansion due to the fly ash or lithium content, test duration and their interaction was also evaluated. The results showed that the ASR-induced expansion decreased with an increase in the admixtures in the mortar bar. However, the specimens made with the both Class F fly ash and lithium salt produced more effective mitigation approach when compared to those prepared with fly ash or lithium salt alone. The ASR-induced expansions of fly ash or lithium bearing mortar bars by the proposed models generated a good correlation with those obtained by the experimental procedures.

Bunkder C유 회분의 물리적, 화학적, 전기적 특성분석 (A Characteristic Analysis of Physical, Chemical and Electrical Property for Bunker C Fly Ash)

  • 이재근;이정언;안영철
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1996년도 춘계학술발표회 초록집
    • /
    • pp.88-96
    • /
    • 1996
  • The characteristic analysis of fly ash generated from a fired power plant using bunker-C oil has been investigated. Ash size distribution by an optical microscopy with image processing technique, morphological shape by a scanning electron microscope(SEM) and microscope, chemical composition by the inductively coupled plasma emission spectrometry(ICP), and resistivity measurement as a function of temperature and moisture content by the resistivity meter are performed. A study of physical, chemical and electrical characteristics of bunker-C fly ash plays an important role of improving the performance of an electrostatic precipitator and protecting air pollution. The samples of bunker-C fly ash for analysis were collected from the electrostatic precipitator hopper of Ulsan Power Plant Unit 1 and Pusan Power Plant Unit 1. Mass median diameter(MMD) of bunker-C fly ash was measured 12.7${\mu}{\textrm}{m}$, while MMD of fly ash generated from the mixture of bunker-C oil(40%) and domestic anthracitic coal(60%) was 25.7${\mu}{\textrm}{m}$. The morphological structure of bunker-C fly ash consisted of fine particles of non-spherical shape. The primary chemical components of bunker-C fly ash were composed of SiO2(2.36%), Al2O3(4.91%), Fe2O3(14.33%) and C(11.84%). Resistivity of bunker-C fly ash was found to be increased with increasing temperature at the range of 100~15$0^{\circ}C$ and was measured 103~104 ohm-cm.

  • PDF

정전선별법에 의한 고순도 석탄회와 고탄소 석탄회의 분리 (Separation of High Purity and High Carbon Fly Ash by Electrostatic Method)

  • 한오형;깅현호
    • 자원리싸이클링
    • /
    • 제12권2호
    • /
    • pp.45-53
    • /
    • 2003
  • 2001년 국내에서는 총 491만톤의 석탄회가 발생되어, 이중 약 63.3%가 재활용되고 있으나 이들의 대부분은 콘크리트 혼합물과 시멘트 산업에 사용되고 있다. 그러므로 본 연구에서는 석탄회의 활용도를 높이기 위한 새로운 용도개발을 위한 목적으로 마찰대전법 대신 정전유도법을 사용하였다. 정전유도법을 적용하여 석탄회로부터 1%LOI 이하의 고순도 석탄회와 70%LOI 이상의 고탄소질 석탄회를 얻을 수 있음을 확인하였으며, 본 실험에서 두 전극간의 전위차는 8~16kV 범위로 적용하였다.

용출수를 사용한 플라이애쉬 혼입 모르타르의 강도특성에 관한 연구 (A Study on the Compressive Strength Property of Mortar with Fly Ash Using Water Eluted from Recycled Coarse Aggregates)

  • 신상엽;정의창;김영수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.31-32
    • /
    • 2013
  • ThThe purpose of this study is to investigate the compressive strength properties of fly ash using water eluted from recycled coarse aggregate. When fly ash come into contact with water, they have not a autonomously chemical reaction. But fly ash is a pozzolan reaction when fly ash come into contact with water and calcium hydroxide(Ca(OH)2) in alkaline environment. For that reason, if water eluted from recycled coarse aggregate use mixture water, fly ash is expected to reaction of pozzolan reaction property in early stage. According to the experimentation result, ICP-MS analysis showed water eluted from recycled coarse aggregate has a high alkali-ash value of pH of 12 and over. And mixing ratio 30% fly ash mortar using water eluted from recycled coarse aggregate showed a similar strength of plain mortar due to the pozzolan reaction. Also, poor strength in initial age, disadvantage of mortar using fly ash, can be improved as hydration in early age is expedited due to calcium hydroxide(Ca(OH)2) and unhydrated cement component eluted from recycled aggregate mortar.

  • PDF

석탄회-점토계 소지의 제조 및 물성 (Manufacture and Properties of Coal Fly Ash-Clay Body)

  • 송종택;윤성대;류동우;한경섭
    • 한국세라믹학회지
    • /
    • 제33권7호
    • /
    • pp.771-778
    • /
    • 1996
  • Utilization of fly ash by-produced from coal fired power plants and classified as general waste became very important problem to solve in the environmental protection and recycling of waste materials. The possibility of large scale substitution of fly ash as a raw material for bricks and wet tiles was highly expected because the chemical compositions of fly ash were mostly Al2O3 and SiO2 and the properties of it were very similar with clay. Accordingly in order to investigate the substitutional limit these specimens were substituted from 0 to 100 wt% fly ash by 20wt% increment for clay. Fly ash-clay bodies were fired at 1200, 1250 and 130$0^{\circ}C$ and then their properties were measured, It was found that these specimens sintered at 125$0^{\circ}C$ had a good bending strength. Especially when these sintered bodies were added to 20, 40 and 60 wt% fly ash the bending strength of those were 201 , 205 and 191kg.cm2 respectively with the water absorption below 1%, This showed that fly ash could be substituted ab 60 wt% in this experiment.

  • PDF

도시쓰레기 소각로 비산재 용융결정화 및 용출특성 (Crystallization of the Fly Ash from Municipal Incinerator)

  • 이혜문;김우현;이정규
    • 연구논문집
    • /
    • 통권31호
    • /
    • pp.5-14
    • /
    • 2001
  • These days, interest in the leaching of hazardous heavy metals to consist of incinerator fly ash is increasing, because the heavy metals that leach from the incinerator fly ash pollute the soil and ground water. Therefore this study was undertaken to crystallize the fly ash and prevent the leaching of hazardous heavy metals from fly ash. The concentrations and the leaching concentration of hazardous heavy metals(Cd, Cr, Hg, Pb, Zn) in the law incinerator fly ash have been measured. The fly ash was melted with two kinds of flux($Na_2CO_3, CaCO_3$) and its add quantity(0, 1, 2, 3 wt%). The crystal structure of melting materials was analyzed by SEM(Scaning Electron Microscope) and X-RD(X-Ray Diffractometer). The leaching test of melting materials was undertaken. And the relation between crystallization of melting materials and flux and leaching concentration. These experiments indicate that the concentration and leaching concentration of heavy metals in incinerator fly ash was much higher than the regulatory standard for leachates in Korea and U.S.A and average concentration of heavy metals in soil. And the crystal structure was better.

  • PDF