• Title/Summary/Keyword: Flux trap

Search Result 30, Processing Time 0.029 seconds

Particle Flux in the Eastern Bransfield Strait in 1999, Antarctica

  • Kim, Dong-Seon;Kim, Dong-Yup;Shim, Jeong-Hee;Kang, Sung-Ho;Kang, Young-Chul
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.395-400
    • /
    • 2001
  • A time-series sediment trap was deployed at 1,034 m water depth in the eastern Bransfield Strait from December 25, 1998 to December 24, 1999. About 99 % of total mass fluxes were observed during the austral summer and fall (January, February, and March). The annual total mass flux was $49.2g\;m^{-2}$. Biogenic materials including biogenic silica, organic matter, and carbonate accounted for about 67% of total particle flux, and lithogenic materials contributed about 29%. Biogenic silica was the most dominant (42% of the total flux) in these components. The next most important biogenic component was organic matter, comprising 24% of total mass flux. Calcium carbonate contributed a small fraction of total mass flux, only 0.6%. The annual organic carbon flux was $5.2g\;C\;m^{-2}$ at 1,034m water depth. The annual primary production was estimated to be $21.6g\;C\;m^{-2}$ at the sediment trap site, which seems to be highly underestimated. About 5.5% of the surface water production of organic carbon sinks below 1,034m water depth.

  • PDF

Carotenoid Pigments from Suspended and Sinking Particulate Matter in Prydz Bay, Antarctica

  • Noh, Il
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1357-1371
    • /
    • 2011
  • Suspended and sinking particles were collected during ODP Leg 119 to the Indian Ocean sector of the Antarctic Ocean. Field work was carried out at four sampling sites in Prydz Bay. Two of these sites were located in the Outer Bay, and two in the Inner Bay. At the four locations, a total of ten deployments of a sediment trap array were made. The concentrations of carotenoids both in suspended and sinking particulate matter in Prydz Bay were analyzed using HPLC. Fucoxanthin was the dominant carotenoid pigments both in suspended and sinking particles. The present study also indicates that 19'-hexanoyoxyfucoxanthin-containing prymesiophytes (Phaeocystis spp.) was abundant in the study area. The flux rates of carotenoids were generally highest at 50 m, and approximately double the flux rates at deeper horizons, however, at Inner Bay sites, the mean flux rates of carotenoids were greatest at 200 m, and 3 times greater than that of 50 m. Such anomalous high fluxes at 200 m imply that grazers were locally abundant between 100 m and 200 m at these sites close to land, and this hypothesis is supported by visual evidence of lots of fecal pellets in the 200 m trap. Integrates standing stocks versus sinking pigments data support that particulate material in Prydz Bay was not recycled rapidly.

An investigative study of enrichment reduction impact on the neutron flux in the in-core flux-trap facility of MTR research reactors

  • Xoubi, Ned;Darda, Sharif Abu;Soliman, Abdelfattah Y.;Abulfaraj, Tareq
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.469-476
    • /
    • 2020
  • Research reactors in-core experimental facilities are designed to provide the highest steady state flux for user's irradiation requirements. However, fuel conversion from highly enriched uranium (HEU) to low enriched uranium (LEU) driven by the ongoing effort to diminish proliferation risk, will impact reactor physics parameters. Preserving the reactor capability to produce the needed flux to perform its intended research functions, determines the conversion feasibility. This study investigates the neutron flux in the central experimental facility of two material test reactors (MTR), the IAEA generic10 MW benchmark reactor and the 22 MW s Egyptian Test and Research Reactor (ETRR-2). A 3D full core model with three uranium enrichment of 93%, 45%, and 20% was constructed utilizing the OpenMC particle transport Monte Carlo code. Neutronics calculations were performed for fresh fuel, the beginning of life cycle (BOL) and end of life cycle (EOL) for each of the three enrichments for both the IAEA 10 MW generic reactor and core 1/98 of the ETRR-2 reactor. Criticality calculations of the effective multiplication factor (Keff) were executed for each of the twelve cases; results show a reasonable agreement with published benchmark values for both reactors. The thermal, epithermal and fast neutron fluxes were tallied across the core, utilizing the mesh tally capability of the code and are presented here. The axial flux in the central experimental facility was tallied at 1 cm intervals, for each of the cases; results for IAEA 10 MW show a maximum reduction of 14.32% in the thermal flux of LEU to that of the HEU, at EOL. The reduction of the thermal flux for fresh fuel was between 5.81% and 9.62%, with an average drop of 8.1%. At the BOL the thermal flux showed a larger reduction range of 6.92%-13.58% with an average drop of 10.73%. Furthermore, the fission reaction rate was calculated, results showed an increase in the peak fission rate of the LEU case compared to the HEU case. Results for the ETRR-2 reactor show an average increase of 62.31% in the thermal flux of LEU to that of the HEU due to the effect of spectrum hardening. The fission rate density increased with enrichment, resulting in 34% maximum increase in the HEU case compared to the LEU case at the assemblies surrounding the flux trap.

Downward particle flux in the eastern Bransfield Strait, Antarctica

  • Kim, Dongseon;Kim, Dong-Yup;Jeonghee Shim;Kang, Young-Chul;Kim, Taerim
    • Journal of the korean society of oceanography
    • /
    • v.38 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • A time-series sediment trap was deployed at a depth of 1034 m in the eastern Bransfield Strait from December 25, 1998 to December 24, 1999. Particle fluxes showed large seasonal variation; about 99% of the annual total mass flux (49 g m/sup -2/) was collected during the austral summer and fall (January-March). Settling particles consisted primarily of biogenic silica, organic carbon, calcium carbonate, and lithogenic material. Biogenic silica and lithogenic material predominated settling particles, comprising 36% and 30% of the total mass flux, respectively, followed by organic carbon, 11% and calcium carbonate, merely 0.6%. The annual organic carbon flux was 5.4 g C m/sup -2/ at 1000 m in the eastern Bransfield Strait, which is greater than the central Strait flux. The relatively lower flux of organic carbon in the central Bransfield Strait may be caused by a stronger surface current in this region. Organic carbon flux estimates in the eastern Bransfield Strait are the highest in the Southern Ocean, perhaps because of the fast sinking of fecal pellets, which leads to less decomposition of organic material in the water column. Approximately 5.8% of the organic carbon produced on the surface in the eastern Bransfield Strait is exported down to 1000 m; this percentage exceeds the maximum EF/sub 1000/ values observed in the Atlantic and Southern Oceans. The eastern Bransfield Strait appears to be the most important site of organic carbon export to the deep sea in the Southern Ocean.

Vertical Variation of the Particle Flux in the Eastern Tropical Pacific from 2009 to 2010 (동태평양 열대해역에서 2009-2010년 침강입자 플럭스의 수직 변화)

  • Kim, Hyung Jeek;Cho, Sosul;Kim, Dongseon;Kim, Kyeong Hong;Yoo, Chan Min
    • Ocean and Polar Research
    • /
    • v.44 no.3
    • /
    • pp.221-233
    • /
    • 2022
  • A sediment trap had been deployed at 1250 m depth in the Eastern Tropical Pacific (ETP) from September 2009 to July 2010, with the aim of understanding the temporal and vertical variability of particle flux. During the monitoring period, total particle flux varied from 12.4 to 101.0 mg m-2day-1, with the higher fluxes in January-March 2010. Biogenic particle flux varied in phase with the total particle flux. The increase in total particle flux during January-March 2010 was attributed to the enhanced biological production in the surface layer caused by wind-driven mixing in response to the seasonal shifts in the location of the Intertropical convergence zone. The export ratio (e-ratio) was estimated using the particulate organic carbon flux and satellite-derived net primary production data. The estimated e-ratios changed between 0.8% and 2.8% (1.4±0.6% on average). The ratio recorded in the negative phase of Pacific decadal oscillation (PDO) was similar to the previous results obtained from the ETP during the 1992/93 periods in the positive phase of PDO. This suggests that the regime shift of the PDO is not related to the carbon export ratio.

Magneto-optical trap of slowed sodium atoms by using a Zeeman slower and the characteristics of trapped atoms (Zeeman 감속기를 사용하여 감속된 원자의 포획과 포획된 원자의 특성)

  • 고광훈;정도영;한재민;이종민
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.5
    • /
    • pp.347-351
    • /
    • 2001
  • The neutral sodium atoms have been slowed down to the trap depth by using a Zeeman slower and trapped by the magneto-optical method. The density and the temperature of the trapped atoms are measured, and the frequency region where the trap is available is represented. We controlled the flux of slowed atoms by varying the slowing beam intensity, and we measured the increasing and decreasing rate of trapped atoms. We show that the difference between the increasing and decreasing rate of trapped atoms result from the loss proportional to $N_2$.

  • PDF

Chlrorophylls and their Degradation Products using High Performance Liquid Chromatography (HPLC), with Data from Suspended and Sinking Particulate Matter in Prydz Bay, Antarctica

  • Noh, Il
    • Journal of Navigation and Port Research
    • /
    • v.35 no.4
    • /
    • pp.323-334
    • /
    • 2011
  • Suspended and sinking particles were collected in austral summer during ODP Leg 119 to the Indian Ocean sector of the Antarctic Ocean. Field work was carried out at four sampling sites in Prydz Bay. Two of these sites were located in the Outer Bay, and two in the Inner Bay. At the four locations, a total of ten deployments of a sediment trap array were made. The concentrations of chlorophylls and their degradation products both in suspended and sinking particulate matter in Prydz Bay were analyzed using HPLC. Chlorophylls a and c were the dominant algal pigments both in suspended and sinking particles. Because of the abundance of fecal pellets at Site 740, the mean fluxes at 200 m averaged 6 fold greater than that at 50 m. This implies that a dense swarm of zooplankters, presumably large copepods and/or salps, may "feed and excrete" mainly in between 100-200 m depths at this site, closest to land in Prydz Bay. Interestingly, The flux of phaeophorbide a was generally similar in magnitude to that of chlorophyll a throughout the study areas. This is an evidence that materials escaping from near-surface regions in austral summer derive mainly from the gazing of zooplankters. "New production" from sediment-trapped CHL pigment fluxes in Prydz Bay was estimated using f-ratio of 0.15, ranging from 520 to $1,605\;{\mu}gC\;m^{-2}\;day^{-1}$.

Stable Carbon and Nitrogen Isotopes of Sinking Particles in the Eastern Bransfield Strait (Antarctica)

  • Khim, Boo-Keun;Kim, Dong-Seon;Shin, Hyoung-Chul;Kim, Dong-Yup
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.167-176
    • /
    • 2005
  • A time-series sediment trap was deployed at 1,034 m water depth in the eastern Bransfield Strait for a complete year from December 25, 1998 to December 24, 1999. About 99% of total mass flux was trapped during an austral summer, showing distinct seasonal variation. Biogenic particles (biogenic opal, particulate organic carbon, and calcium carbonate) account for about two thirds of annual total mass flux $(49.2\;g\;m^{-2})$, among which biogenic opal flux is the most dominant (42% of the total flux). A positive relationship (except January) between biogenic opal and total organic carbon fluxes suggests that these two variables were coupled, due to the surface-water production (mainly diatoms). The relatively low $\delta^{13}C$ values of settling particles result from effects on C-fixation processes at low temperature and the high $CO_2$ availability to phytoplankton. The correspondingly low $\delta^{l5}N$ values are due to intense and steady input of nitrates into surface waters, reflecting an unlikely nitrate isotope fractionation by degree of surface-water production. The $\delta^{l5}N$ and $\delta^{l3}C$ values of sinking particles increased from the beginning to the end of a presumed phytoplankton bloom, except for anomalous $\delta^{l5}N$ values. Krill and the zooplankton fecal pellets, the most important carriers of sinking particles, may have contributed gradually to the increasing $\delta^{l3}C$ values towards the unproductive period through the biomodification of the $\delta^{l3}C$ values in the food web, respiring preferentially and selectively $^{12}C$ atoms. Correspondingly, the increasing $\delta^{l5}N$ values in the intermediate-water trap are likely associated with a switch in source from diatom aggregates to some remains of zooplankton, because organic matter dominated by diatom may be more liable and prone to remineralization, leading to greater isotopic alteration. In particular, the tendency for abnormally high $\delta^{l5}N$ values in February seems to be enigmatic. A specific species dominancy during the production may be suggested as a possible and speculative reason.

Preliminary conceptual design of a small high-flux multi-purpose LBE cooled fast reactor

  • Xiong, Yangbin;Duan, Chengjie;Zeng, Qin;Ding, Peng;Song, Juqing;Zhou, Junjie;Xu, Jinggang;Yang, Jingchen;Li, Zhifeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3085-3094
    • /
    • 2022
  • The design concept of a Small High-flux Multipurpose LBE(Lead Bismuth Eutectic) cooled Fast Reactor (SHMLFR) was proposed in the paper. The primary cooling system of the reactor is forced circulation, and the fuel element form is arc-plate loaded high enrichment MOX fuel. The core is cylindrical with a flux trap set in the center of the core, which can be used as an irradiation channel. According to the requirements of the core physical design, a series of physical design criteria and constraints were given, and the steady and transient parameters of the reactor were calculated and analyzed. Regarding the thermal and hydraulic phenomena of the reactor, a simplified model was used to conduct a preliminary analysis of the fuel plates at special positions, and the temperature field distribution of the fuel plate with the highest power density under different coolant flow rates was simulated. The results show that the various parameters of SHMLFR meet the requirements and design criteria of the physical design of the core and the thermal design of the reactor. This implies that the conceptual design of SHMLFR is feasible.

Organic Carbon Cycling in Ulleung Basin Sediments, East Sea (동해 울릉분지 퇴적물에서 유기탄소 순환)

  • Lee, Tae-Hee;Kim, Dong-Seon;Khim, Boo-Keun;Choi, Dong-Lim
    • Ocean and Polar Research
    • /
    • v.32 no.2
    • /
    • pp.145-156
    • /
    • 2010
  • This study investigated organic carbon fluxes in Ulleung Basin sediments, East Sea based on a chamber experiment and geochemical analyses. At depths greater than 2,000 m, Ulleung Basin sediments have high organic carbon contents (over 2.0%). Apparent sedimentation rates (ASR) calculated from excess $^{210}Pb$ activity distribution, varied from 0.036 to $0.047\;cm\;yr^{-1}$. The mass accumulation rates (MAR) calculated from porosity, grain density (GD), and ASR, ranged from 131 to $184\;g\;m^{-2}\;yr^{-1}$. These results were in agreement with sediment trap results obtained at a water depth of 2100 m. Input fluxes of organic carbon varied from 7.89 to $11.08\;gC\;m^{-2}\;yr^{-1}$ at the basin sediments, with an average of $9.56\;gC\;m^{-2}\;yr^{-1}$. Below a sediment depth of 15cm, burial fluxes of organic carbon ranged from 2.02 to $3.10\;gC\;m^{-2}\;yr^{-1}$. Within the basin sediments, regenerated fluxes of organic carbon estimated with oxygen consumption rate, varied from 6.22 to $6.90\;gC\;m^{-2}\;yr^{-1}$. However, the regenerated fluxes of organic carbon calculated by subtracting burial flux from input flux, varied from 5.87 to $7.98\;gC\;m^{-2}\;yr^{-1}$. Respectively, the proportions of the input flux, regenerated flux, and burial flux to the primary production ($233.6\;gC\;m^{-2}\;yr^{-1}$) in the Ulleung Basin were about 4.1%, 3.0%, and 1.1%. These proportions were extraordinarily higher than the average of world open ocean. Based upon these results, the Ulleung Basin might play an integral role in the deposition and removal of organic carbon.