• Title/Summary/Keyword: Flux matrix

Search Result 157, Processing Time 0.029 seconds

Carburization Characteristics of MERT Type KHR-45A Steel in Carbon Rich Environment (Carbon Rich 분위기에서의 KHR45강의 침탄특성 평가 연구)

  • Lim, Jae Kyun;Yang, Gimo;Ihm, Young Eon
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.293-298
    • /
    • 2013
  • In this study, an HP-mod. type(KHR-45A), which is used as a heater tube material in the pyrolysis process, was evaluated for its carburizing properties. It was confirmed from the microstructural observation of the tubes that the volume fraction of carbide increased and that the coarsening of Cr-carbide generated as a degree of carburization increased. The depth of the hardened layer, which is similar to the thickness of the carburized region of each specimen, due to carburization is confirmed by measurement of the micro-Vickers hardness of the cross section tube, which thickness is similar to that of the carburized region of each specimen. Two types of chromium carbides were identified from the EBSD (electron back-scattered diffraction) image and the EDS (energy-dispersive spectroscopy) analysis: Cr-rich $M_{23}C_6$ in the outer region and Cr-rich $M_7C_3$ in the inner region of tubes. The EDS analysis revealed a correlation between the ferromagnetic behavior of the tubes and the chromium depletion in the matrix. The chromium depletion in the austenite matrix is the main cause of the magnetization of the carburized tube. The method used currently for the measurement of the carburization of the tubes is confirmed; carburizing evaluation is useful for magnetic flux density measurement. The volume fraction of the carbide increased as the measuring point moved into the carburized side; this was determined from the calculation of the volume fraction in the cross-section image of the tubes. These results are similar to the trends of carburization measurement when those trends were evaluated by measurement of the magnetic flux density.

Effect of Surface Treated Magneto-responsible Particle on the Property of Magneto-rheological Elastomer Based on Silicone Rubber

  • Choi, Soyeon;Chung, Kyungho;Kwon, Seunghyuk;Choi, Hyoungjin
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.113-121
    • /
    • 2016
  • Magneto-rheological elastomer (MRE) is a material which shows reversible and various modulus under magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb broader frequency range of vibration. These characteristic phenomena result from the orientation of magnetic particle (i.e., chain-like formation) in rubber matrix. In this study, silicone rubber was used as a matrix of MREs. Carbonyl iron particle (CIP) was used to give magnetic field reactive modulus of MRE. The surface of the CIP was modified with chemical reactants such as silane coupling agent and poly(glycidyl methacrylate), to improve interfacial adhesion between matrix and CIP. The mechanical properties of MREs were measured without the application of magnetic field. The results showed that the tensile strength was decreased while the hardness was increased with the addition of CIP. Also, surface modification of CIP resulted in the improvement of physical properties of MRE, but the degree of orientation of CIP became decreased. The analysis of MR effect was carried out using electromagnetic equipment with various magnetic flux. As the addition of CIP and magnetic flux increased, increment of MR effect was observed. Even though the surface modification of CIP gave positive effect on the mechanical properties of MRE, MR effect was decreased with the surface modification of CIP due to decrease of CIP orientation. Throughout this study, it was found that the loading amounts of CIP affected the mechanical properties of MRE, and surface property of CIP was an important factor on MR effect of MRE.

PVA/H-β zeolite mixed matrix membranes for pervaporation dehydration of isopropanol-water mixtures

  • Huang, Zhen;Ru, Xiao-Fei;Guo, Yu-Hua;Zhu, Ya-Tong;Teng, Li-Jun
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.165-178
    • /
    • 2019
  • Mixed matrix membranes (MMMs) of poly (vinyl alcohol) (PVA) containing certain amounts of H-${\beta}$ zeolite for pervaporation were manufactured by using a solution casting protocol. These zeolite-embedded membranes were then characterized with scanning electron microscope (SEM), X-ray diffraction (XRD) and swelling tests. The membrane separation performance has been examined by means of isopropanol (IPA) dewatering from its highly concentrated aqueous solutions via response surface methodology (RSM). The results have demonstrated that the influences of feed IPA composition (85-95 wt.%), feed temperature ($50-70^{\circ}C$), zeolite loading (15-25 wt.%) and their interactive influences are all statistically significant on both pervaporation flux ($398-1228g/m^2{\cdot}h$) and water/isopropanol separation factor (617-2001). The quadratic models based on the RSM analysis have performed excellently to correlate experimental data with very high determination coefficients and very low relative standard deviations. The optimal pervaporation predictions given by using the RSM models demonstrate a total flux of $953g/m^2{\cdot}h$ and separation factor of 1458, and are excellently verified by experimental results. As reflected by these results, PVA MMMs embedded with hydrophilic $H-{\beta}$ zeolite entities have performed considerably better than its pure counterpart and indicated great potential for isopropanol dehydration applications.

Preparation and Characterization of Mixed Matrix Membrane Consisting of Polyethersulfone and ZnO Nanoparticles (Polyethersulfone과 ZnO 나노입자로 조성된 혼합기질막의 제조와 특성 평가)

  • Lee, Seung-Hun;Lee, Min-Su;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.463-469
    • /
    • 2016
  • In this research, a new expectation in enhancing the PES (polyethersulfone) polymer phase inversion membrane performances with nanoparticles is proposed by using ZnO. This paper investigated the synthesis of PES phase inversion membranes including ZnO nanoparticles and evaluates the performance of these mixed matrix membranes. The PES-ZnO mixed matrix membranes were fabricated by phase inversion method using the PES-ZnO-NMP(N-methyl-1-pyrrolidone) casting solutions with low ZnO nanoparticles content of 0.375 wt%. The influence of ZnO nanoparticles on the characteristics of PES-ZnO mixed matrix membranes was investigated with scanning electron microscope observations of membrane cross-sections, contact angle measurements, tensile strength measurements, pure water flux measurements and ultrafiltration experiments of BSA solution. Those results showed that the performance advancements in comparison with the pure PES membrane without ZnO in terms of increasing hydrophilicity as well as reducing membrane fouling by adding ZnO nanoparticles even in low concentration.

Microstructure and Hardness of 1st layer with Crystallographic Orientation of Solidification Structure in Multipass Weld using High Mn-Ni Flux Cored Wire (고(<24%)Mn 플럭스코어드와이어를 사용한 다층 용접 시 초층 응고조직의 결정면방위에 따른 미세조직과 경도)

  • Han, Il-Wook;Eom, Jung-Bok;Yun, Joong-Gil;Lee, Bong-Geun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.77-82
    • /
    • 2016
  • In this study, Microstructure and hardness of 1st layer with crystallographic orientation were investigated about solidification structure in multipass weld using high Mn-Ni flux cored wire. Microstructure of solidification consisted of austenite matrix and a little ${\varepsilon}-phase$ in grain boundaries. Orientation of grains was usually (001), (101), (111). According to crystallographic orientation, morphology of primary dendrite was different. The depletion of Fe and the segregation of Mn, C, Ni, Si, Cu, Cr, O were found along the grain boundaries. The area of segregation was wide with an order of (001), (101), (111) grains. And hardness of grains with crystallographic orientation increased with an order of (001), (101), (111) grains because of the segregation along dendrite boundary.

Formation of the precipitates in the Bi-2223/Ag superconducting tapes by post-heat treatment (Bi-2223 초전도 선재의 후열처리 과정에 의한 석출물의 형성)

  • Lee, Sang-Hee;Kim, Cheol-Jin;Chung, Jun-Ki;Yoo, Jae-Moo;Ko, Jae-Woong
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.262-267
    • /
    • 2000
  • To tap the possibility of exploiting the precipitates as flux-pinning center in the Bi-2223 superconducting system, as-received Bi-2223/Ag tapes with the starting composition of Bi$_{1.8}$Pb$_{0.4}$Sr$_2$Ca$_{2.2}$Cu$_3$O$_8$ were post-annealed at various temperature, oxygen partial pressure, and annealing time. The 2$^{nd}$ phases in the annealed specimen were analysed with XRD, SEM, TEM, and EDS. The size and the distribution of the precipitates such as (Ca,Sr)$_2$(Pb,Bi)O$_4$ and Bi$_{0.5}$Pb$_3$Sr$_2$Ca$_2$CuO$_{12+{\delta}}$ (3221) in the Bi-2223 matrix was controllable by varying heat-treatment condition without breaking the connectivity of the 2223 grains. The nano-size precipitates within the 2223 grains are conjectured as working as flux-pinning sites, resulting in increased J$_c$ value.

  • PDF

Study of enhanced physical and pervaporation properties in composite membrane

  • RajiniKanth, Vanarch;Ravindra, Sakey;Madalageri, Priya M;Kajjari, Praveen B.;Mulaba-Bafubiandi, Antoine F
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.483-498
    • /
    • 2017
  • Novel mixed matrix membranes of Sodium Alginate (NaAlg) were developed by the incorporation ofunmodified, modified Phosphomolybdic acid (PMA) then cross-linked with glutaraldehyde externally. These membranes were prepared by the solution casting technique. Pervaporation (PV) experiments have been performed with pure NaAlg, unmodified NaAlg-PMA5, NaAlg-PMA10, modified NaAlg-mPMA5, and NaAlg-mPMA10 (wt. % of PMA 5 and 10) at 30, 40 and $50^{\circ}C$, to separate water-isopropanol feed mixtures containing 10-30 wt. % of water. Pervaporation results of NaAlg-mPMA10 produced a highest separation factor of 9028 with a flux of $0.269kg/m^2.h$ for 10 wt. % of water containing feed mixture. Both separation factor and flux for water increased significantly with increasing content of mPMA into NaAlg; a significant improvement in PV performance was observed for NaAlg-mPMA5 and NaAlg-mPMA10 membranes when compared to pure NaAlg& PMA-5, PMA-10 membrane.

Flux Pinning Enhancement and Irreversibility Line of Sm doped YBCO Superconductor by Zone Melt Growth Process

  • Kim, So-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.2
    • /
    • pp.81-85
    • /
    • 2004
  • High T$\_$c/ (Sm/Y)$\_$1.8/Ba$\_$2.4/Cu$\_$3.4/O$\_$7-$\delta$/ [(Sm/Y)] superconductor, a combination of Y and Sm(50% each), was systematically investigated by the zone melt growth process. A sample prepared by this method showed well-textured microstructure, and (Sm/Y)$_2$BaCuO$\_$5/[(Sm/Y)211]inclusions were uniformly dispersed in large (Sm/Y)Ba$_2$Cu$_3$O$\_$y/ [(Sm/Y)123]matrix. The sample showed a sharp superconducting transition at 91 K. The magnetization measurements of the (Sm/Y)1.8 sample exhibited the enhanced flux pinning, compared with Y$\_$1.8/Ba$\_$2.4/Cu$\_$3.4/O$\_$7-$\delta$/(Y1.8) sample without Sm. Critical current densities of (Sm/Y) 1.8 sample was 3.5${\times}$10$^4$A/$\textrm{cm}^2$ at 1 T and 77 K.

In Vitro Percutaneous Absorption of Ondansetron Hydrochloride from Pressure-sensitive Adhesive Matrices through Hairless Mouse Skin

  • Gwak, Hye-Sun;Oh, Ik-Sang;Chun, In-Koo
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.644-648
    • /
    • 2003
  • To investigate the feasibility of developing a new ondansetron transdermal system, the effects of vehicles and penetration enhancers on the in vitro permeation of ondansetron hydrochloride (OS) from a pressure-sensitive adhesive (PSA) matrices across dorsal hairless mouse skin were studied. Vehicles employed in this study consisted of various ratios of propylene glycol monocaprylate (PGMC)-diethylene glycol monoethyl ether (DGME) co-solvents and PGMC-propylene glycol (PG) co-solvents with 3% oleic acid. $Duro-Tak^\circledR$ 87-2100 and $Duro-Tak^\circledR$ 87-2196 were used as PSAs. The concentration of DGME in PGMC-DGME co-solvent system affected the release rate; as the concentration of DGME increased, the release rate decreased. The cumulative release amount of OS increased as the ratio of PSA to drug solution decreased. The permeation flux was also primarily affected by the amount of PSAs; as the amount decreased, the permeation flux increased. The overall fluxes from matrix formulations were significantly lower when compared to those obtained from solution formulations. The ratio of PG to PGMC did not affect permeation flux, while the lag time decreased significantly from $5.14\pm3.31 to 0.31\pm0.12$ h as the PG increased from 40% to 60%.

A Study of Characteristic of Electrical-magnetic and Neutron Diffraction of Long-wire High-superconductor for Reducing Energy Losses

  • Jang, Mi-Hye
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.265-272
    • /
    • 2008
  • In this paper, AC losses of long wire Bi-2223 tapes with different twist pitch of superconducting core were fabricated, measured and analyzed. These samples produced by a powder-in-tube method are multi-filamentary tape with Ag matrix. Also, it's produced by non-twist. The critical current measurement was carried out under the environment in Liquid nitrogen and in zero field by 4-prob method. And the Magnetic measurement was carried out under the environment of applied time-varying transport current by transport method. From experiment, the susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O).