• Title/Summary/Keyword: Flux coil

Search Result 359, Processing Time 0.041 seconds

A study on Electromagnetic Propertie of the Ring-shaped electrodeless fluorescent lamp (동근형 무전극 형광램프의 전자계 특성)

  • Lee, Seong-Jin;Kim, Nam-Kun;Park, No-Jun;Lee, Jong-Chan;Jung, Young-II;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.220-221
    • /
    • 2006
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved Quality of the lighting space. Above all, the advantages of ring-shaped electrodeless fluorescent lamp are the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. Therefore, the life time of ring-shaped electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps last up to 60,000 hours, There are intended as a highly efficient replacement for the incandescent reflector lamp in many applications. In this paper, maxwell 3D finite element analysis program (Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250 kHz and some specific conditions. In addition, the optical characteristics of ring-shaped electrodeless fluorescent lamp were measured including light flux, efficiency and color temperature for each case.

  • PDF

A Development Tendency and Feature Study of Generator for Small Aircraft Engine (소형 항공엔진용 발전기 개발동향 및 특성고찰)

  • Kim, In-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.491-494
    • /
    • 2010
  • This paper describes the characteristics of Permanent Magnet Generator(PMG) and Homo-Polar Gnerator(HPG) applied in small aircraft engine. PMG has a advantage of miniaturization and fast bandwidth if it is using the DC/DC converter for power conversion which increases a volume and cost although. On the other hand, HPG has a advantage of simple voltage control accomplished by flux control of field coil. Recently, it is recommended the PMG without DC/DC converter module by reason of the wide range of input voltage of electronic loads and system efficiency.

  • PDF

Fabrication of Planar Type Inductor Using FeTaN Magnetic thin Films

  • Kim, Chung-Sik;Seok Bae;Jeong, Jong-Han;Nam, Seoung-Eui;Kim, Hyoung-June
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.532-538
    • /
    • 2000
  • A double rectangular spiral inductor is fabricated using FeTaN films. The inductor is composed of internal coils sandwiched by magnetic layers. Characteristics of inductor performance are investigated with an emphasis on planarization of magnetic films. In the absence of the planarization process, the grating topology of upper magnetic films over coil arrays degrades the soft magnetic properties and the inductor performance. It also induces a longitudinal magnetic anisotropy with the easy axis aligned to the magnetic flux direction. This alignment prevents the upper magnetic films from contributing to the total induction. Glass bonding is a viable method for achieving a completely planar inductor structure. The planar inductor with glass bonding shows excellent performance : inductance of 1.1 H, Q factor of 7 (at 5 MHz), and the dc current capability up to 100 mA.

  • PDF

A Sensing System of the Halbach Array Permanent Magnet Spherical Motor Based on 3-D Hall Sensor

  • Li, Hongfeng;Liu, Wenjun;Li, Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.352-361
    • /
    • 2018
  • This paper proposes a sensing system of the Halbach array permanent magnet spherical motor(PMSM). The rotor position can be obtained by solving three rotation angles, which revolves around 3 reference axes of the stator. With the development of 3-D hall sensor, the position identification problem of the Halbach array PMSM based on rotor magnetic field is studied in this paper. A nonlinear and serious coupling relationship between the rotation angles and the measured magnetic flux density is established on the basis of the rotation transformation theory and the magnetic field model. In order to get rid of the influence on position detection caused by the harmonics of rotor magnetic field and the stator coil magnetic field, a sensor location combination scheme is proposed. In order to solve the nonlinear equation fast and accurately, a new position solution algorithm which combines the merits of gradient projection and particle swarm optimization(PSO) is presented. Then the rotation angles are obtained and the rotor position is identified. The validity of the sensing system is verified through the simulation.

Rotor Position Sensing Method for Switched Reluctance Motors Using an Indirect Sensor

  • Shin Duck-Shick;Yang Hyong-Yeol;Lim Young-Cheol;Freere Peter;Gurung Krishna
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.173-179
    • /
    • 2005
  • In this paper, a very low cost and robust sensing method for the rotor position of a TSRM(Toroidal Switched Reluctance Motors) is described. Position information of the rotor is essential for SRM drives. The rotor position sensor such as an opto-interrupter or high performance encoder is generally used for the estimation of rotor position. However, these discrete position sensors not only add complexity and cost to the system but also tend to reduce the reliability of the drive system. In order to solve these problems, in the proposed method, rotor position detection is achieved using voltage waveforms induced by the time varying flux linkage in the search coils, and then the appropriate phases are excited to drive the SRM. But the search coil's EMF is generated only when the motor rotates. Therefore the rotor position sensing method using squared Euclidean distance at a standstill is also examined. The simulation and experimental results are presented to verify the performance of the proposed method in this paper.

Rotor Position Detection of a Toroidal Switched Reluctance Motor Using Interior Central Pole Search Coils (돌극 관통형 서치코일을 이용한 토로이달 스위치드 릴럭턴스 모터의 회전자 위치 검출)

  • Yang Hyong-Yeol;Lim Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.448-456
    • /
    • 2004
  • This paper presents a new method of detecting rotor position in Toroidal Switched Reluctance Motor (TSRM). In this paper, low cost and robust characteristics of rotor position detection method are focused in order to compensate for disadvantage of general sensors. Search coils wound through the hole of the stator poles are used for detection of the rotor position in TSRM. Rotor position detection is achieved through electromotive force patterns induced by time-varying flux linkage in the search coils and then adequate phase is excited for drive. The validity of the method is verified by experimental results.

Study on the Air Bearings with Actively Controllable Magnetic Preloads for an Ultra-precision Linear Stage (초정밀 직선 이송계용 능동 자기예압 공기베어링에 관한 연구)

  • Ro, Seung-Kook;Kim, Soo-Hyun;Kwak, Yoon-Keun;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.134-142
    • /
    • 2008
  • In this paper, we propose a precise linear motion stage supported by magnetically preloaded air bearings. The eight aerostatic bearings with rectangular carbon porous pads were located only one side of vertical direction under the platen where four bearings are in both sides of horizontal direction as wrap-around-design, and this gives simpler configuration than which constrained by air bearings for all direction. Each of the magnetic actuators has a permanent magnet generating static magnetic flux far required preload and a coil to perturb the magnetic farce resulting adjustment of air- bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder was designed and built to verify this design concept. The load capacity, stiffness and preload force were examined and compared with analysis. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed. It was shown that motion control far three DOF motions were linear and independent after calibration of the control gains.

Systematic study on calcium-dissolved organic matter interaction in a forward osmosis membrane-filtration system (정삼투 멤브레인 공정에서 칼슘이온과 용존 유기물 상호작용에 의한 플럭스 변화 연구)

  • Heo, Jiyong;Han, Jonghun;Kim, Yejin;Her, Namguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.737-744
    • /
    • 2016
  • The investigation of effects on fouling propensity with various viscosity of feed solutions would be better understanding for forward osmosis (FO) performance since the fouling propensity was directly influenced with solution viscosity. Therefore, this study was focused on the FO fouling with model foultants (humic acid, alginate) by altering solution viscosity with change of ionic strength (I.S) and $Ca^{2+}$ concentrations. In the comparison between humic acid and alginate, as expected, the alginate generally caused more severe fouling (almost 35.8 % of flux reduction) based on the solution characteristics (high viscosity) and fouling patterns (coil and gel layer). However, interesting point to note is that the fouling propensity of alginate was more severe even though it was applied with low viscosity of feed conditions (I.S = 20 mM, $Ca^{2+}=1mM$). This might be due to that crossed linked gel layer of alginate on the FO membrane surface could be best formed in the condition of $Ca^{2+}$ presence and higher I.S, and that is more dominant to fouling propensity than the low viscosity of feed solutions.

Application of BIPV System Functioned as Solar Collector (태양열 집열기 기능을 갖는 BIPV 시스템의 응용)

  • Min, Sung-Hye;Suh, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.953-958
    • /
    • 2006
  • Perimeter zone has been reinforced by active systems, such as fan-coil units, because it causes an increase in heating and cooling loads, dew condensation in winter, or discomfort with cold-draft to residents in buildings, through poor insulation by light-weighed skin due to progressing multi-storied buildings and skyscrapers. However, because these active systems raise Its capacity so that fossil fuel is used as much as they are added, and ultimately, greenhouse effect is urged, we proposed BIPV system functioned as solar collector which can substitute active system. As an early stage, heat balance equation in steady-state by Fortran was used not only for pre-heating effect and electric power capacity during the day in winter, but also for electric power capacity during day in slimmer and sky radiation effect during night in summer. Especially, we should have considered shading on PV, since even a little bit of it makes the efficiency too low for the PV to work. Still, when the flux of pre-heated air was increased to make air-barrier, its temperature was not enough to make it because the speed of heat exchange was too fast to warm up the air, thus the capacity to meet the condition was evaluated, and electric power from PV was made used for it.

  • PDF

Comparative Study of Armature Reaction Field Analysis for Tubular Linear Machine with Axially Magnetized Single-sided and Double-sided Permanent Magnet Based on Analytical Field Calculations

  • Shin, Kyung-Hun;Park, Min-Gyu;Cho, Han-Wook;Choi, Jang-Young
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.79-85
    • /
    • 2015
  • This paper presents a comparative study of a Tubular Linear Machine (TLM) with an Axially Magnetized Single-sided Permanent Magnet (AMSPM) and an Axially Magnetized Double-sided Permanent Magnet (AMDPM) based on analytical field calculations. Using a two-dimensional (2-D) polar coordinate system and a magnetic vector potential, analytical solutions for the flux density produced by the stator windings are derived. This technique is significant for the design and control implementation of electromagnetic machines. The field solution is obtained by solving Maxwell's equations in the simplified boundary value problem consisting of the air gap and coil. These analytical solutions are then used to estimate the self and mutual inductances. Two different types of machine are used to verify the validity of these model simplifications, and the analytical results are compared to results obtained using the finite element method (FEM) and experimental measurement.