• 제목/요약/키워드: Flux

검색결과 10,449건 처리시간 0.041초

이온토포레시스를 이용한 케토프로펜의 경피전달 (Iontophoretic Transport of Ketoprofen)

  • 김정애;오승열
    • Journal of Pharmaceutical Investigation
    • /
    • 제34권4호
    • /
    • pp.275-281
    • /
    • 2004
  • We have studied the effect of polarity, current density, current duration, crosslinking density, swelling ratio, and permeation enhancers on the transdermal flux of ketoprofen from acrylamide hydrogel. Hydrogel was prepared by free radical crosslinking polymerization of acrylamide. Drug loading was made just before transport experiment by soaking the hydrogel in solution containing drug. In vitro flux study using hairless mouse skin was performed at $36.5^{\circ}C$ using side-by-side diffusion cell, and the drug was analysed using HPLC/UV system. The result showed that, compared to passive flux, the total amount of drug transported increased about 18 folds by the application of $0.4\;mA/cm^2$ cathodal current. Anodal delivery with same current density also increased the total amount of drug transported about 13 folds. It seemed that the increase in flux was due to the electrorepulsion and the increase in passive permeability of the skin by the current application. Flux increased as current density, the duration of current application and loading amount (swelling duration) increased. As the cross linking density of the hydrogel increased, flux clearly decreased. The effect of hydrophilic enhancers (urea, N-methyl pyrrolidone, Tween 20) and some hydrophobic enhancers (propylene glycol monolaurate and isopropyl myristate) was minimal. However, about 3 folds increase in flux was observed when 5% oleic acid was used. Overall, these results provide some useful information on the design of an optimized iontophoretic delivery system of ketoprofen.

Comparison of the Characteristics in the Surface Mounted Permanent Magnet and Flux Concentrating Coaxial Magnetic Gears Having the Solid Cores

  • Shin, Ho-Min;Chang, Jung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1275-1284
    • /
    • 2018
  • The coaxial magnetic gear with the flux concentrating structure is known that it has the torque performance advantage over the coaxial magnetic gear having surface mounted permanent magnet, thanks to the flux focusing effect. But, if the solid cores are used in the modulating pieces and rotor cores to consider the mechanical reliability and cost reduction, the operating torque of the flux concentrating coaxial magnetic gear can be significantly diminished because the iron losses at the solid cores affect the actual transmitted torque. Furthermore, the modulating pieces and rotor cores have different characteristics of the iron losses from one another, because the space harmonic components of the magnetic flux density, which cause the iron losses, are different. Thus, in this paper, we focused on the analysis of the characteristics of the space harmonic components of the magnetic flux density and resultant eddy current losses in the surface mounted PM and flux concentrating coaxial magnetic gears, when these coaxial magnetic gears have the solid cores at the modulating pieces and rotor cores. The characteristics of pull-out torque (static torque), operating torque (dynamic torque), and efficiency are also researched, and compared by the 3D finite element analysis (FEA) and experiment.

사용자 요구 조도 보장 에너지 효율적 실내 조명 시스템 조명 방향 및 광속 제어 기법 (A Lighting direction and Luminous Flux Control for Energy-efficiency under Illuminance Requirements in Indoor Lighting Systems)

  • 김훈
    • 조명전기설비학회논문지
    • /
    • 제29권5호
    • /
    • pp.19-25
    • /
    • 2015
  • The management of energy resources for efficient utilization of the energy resources while reducing the system costs is a critical technical issue. Among many kinds of the energy resource management, the energy reduction for indoor lighting systems is getting much concern as a large portion of energy consumption has been made for indoor lightings. In this paper, an energy-efficient lighting control scheme for indoor lighting systems in order to reduce the energy consumption by controlling the luminous flux and the lighting direction under the illuminance constraints is proposed. With the use of the user location information for the luminaire which is closely located to the user, the proposed scheme firstly sets the light direction of the luminaire to be aligned to the user location. Then, an optimization problem to find the luminous flux of each luminaire is formulated in order to minimize the luminous flux sum of the luminaires with the constraints for the dynamic ragne of the luminous flux, and the light flux for each luminaire is determined by the solution of the problem. Simulation results show that the proposed scheme outperforms the luminaire control scheme with only the luminous flux control in the evaluation of satisfaction of the required illuminance level.

표면부착형 영구자석 동기전동기의 자속기반 센서리스 제어 알고리즘의 추정자속 옵셋 제거 기법 (Eliminating Method of Estimated Magnetic Flux Offset in Flux based Sensorless Control Algorithm of Surface Mounted PM Synchronous Motor)

  • 김학준;조관열;김학원;이광운
    • 전력전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.216-222
    • /
    • 2017
  • The rotor position of a PM synchronous motor is commonly estimated from the mathematical model for the sensorless control without rotor position sensors. For the magnet flux-based rotor position estimator in the stationary reference frame, the magnet flux estimator for estimating rotor position and speed includes the integrator. The integrator in the magnet flux estimator may accumulate the offset of the current sensors and the voltage drift. This continuous accumulation of the offset may cause the drift and overflow in the integrator, such that the estimated rotor position and speed may fail to track the real rotor position and speed. In this paper, the magnet flux estimator without integrator is proposed to avoid overflow in the integrator. The proposed rotor position and speed estimator based on magnet flux estimator are verified through simulation and experiment.

축방향 2상 영구자석형 횡자속 회전기의 동특성 해석 (Dynamic Characteristic Analysis of Rotating Type Axial Phase Permanent Magnet Transverse Flux Machine)

  • 이지영;이인재;강도현;장정환;김지원;정시욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1029-1030
    • /
    • 2007
  • This paper describes the dynamic analysis method and the characteristics of rotating type transverse flux motors excited by permanent magnets; the machine is called TFRM in here. A prototype of TFRM, made by combing soft magnetic composite (SMC) core, is introduced first, then the magneto static and dynamic analysis methods are explained. Analysis results are compared with measured results, and finally the effects of the proposed dynamic analysis method and the characteristics of TFRM are discussed.

  • PDF

자속구속 리액터의 히스테리시스 특성 분석 (Analysis of Hysteresis Characteristics of Flux-Lock Reactor)

  • 임성훈;최효상;강형곤;고석철;이종화;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.255-258
    • /
    • 2003
  • The hysteresis characteristics of flux-lock reactor, which is an essential component of flux-lock type superconducting fault current limiter (SFCL), was investigated. The hysteresis loss of iron core in flux-lock type SFCL does not happen due to its winding's structure especially in the normal state. From the equivalent circuit for the flux-lock type SFCL and the fault current limiting experiments, the hysteresis curves could be drawn. Through the hysteresis curves together with the fault current level due to the inductance ratio for the 1st and 2nd winding, the increase of the number of turns in the 2nd winding of the flux-lock type SFCL had a role to prevent the iron core from saturation.

  • PDF

MIAB용접에서 코일에 의한 자속밀도 분포의 수치적 해석에 관한 연구 (A Study on the Numerical Analysis of Magnetic Flux Density by a Solenoid for MIAB Welding)

  • 최동혁;김재웅
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.73-81
    • /
    • 2001
  • The MIAB welding uses a rotating arc as its heat source and is known as an efficient method fur pipe butt welding. The arc is rotated around the weld line by the electro-magnetic force resulting from the interaction of arc current and magnetic field. The electro-magnetic force is affected by magnetic flux density, arc current, and arc length. Especially, the magnetic flux density is an important factor on arc rotation and weld quality. This paper presents a 2D finite element model for the analysis of magnetic flux density in the actual welding conditions. The magnetic flux density is mainly dependent on gap between two pipes, the position of coil from gap center, exciting current, and relative permeability. Thus, the relations between magnetic flux density and main factors were investigated through experiment and analysis. Experiments were performed for the steel pipes(48.1mm O.D and 2.0mm thickness). The analysis results of magnetic flux density reveal that it increases with increasing exciting current, increasing relative permeability, decreasing distance from gap center to coil, and decreasing gap size. It is considered that the results of this study can be used as important data on the design of coil system and MIAB welding system.

  • PDF

비부식성 플럭스를 이용한 알루미늄 브레이징용 필러 소재의 저온 성형용 금속 복합 분말 개발 (Development of Metal Composite Powder Non-corrosive Flux for Low Temperature Forming of the Aluminum Brazing Filler Material)

  • 김대영;장하늘;윤대호;신윤호;김성호;최현주
    • 한국분말재료학회지
    • /
    • 제26권1호
    • /
    • pp.16-21
    • /
    • 2019
  • In aluminum brazing processes, corrosive flux, which is used in preventing oxidation, is currently raising environmental concerns because it generates many pollutants such as dioxin. The brazing process involving non-corrosive flux is known to encounter difficulties because the melting temperature of the flux is similar to that of the base material. In this study, a new brazing filler material is developed based on aluminum and non-corrosive flux composite powder. To minimize the interference of consolidation aluminum alloy powder by the flux, the flux is intentionally embedded in the aluminum alloy powder using a mechanical milling process. This study demonstrates that the morphology of the composite powder can be varied according to the mixing process, and this significantly affects the relative density and mechanical properties of the final filler samples.

쇄교자속관측기를 이용한 저속 영역에서의 표면부착형 영구자석 동기전동기의 토크 오차 보상기법 (Torque error compensation of SPMSM drives with a stator flux linkage observer at low speed)

  • 최성민;박창석;이재석
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1031-1035
    • /
    • 2018
  • 본 논문은 저속 운전을 포함한 영구자속의 자속 추정을 통하여 Permanent Magnet Synchronous Motor(PMSM)의 토크 오차를 보상하는 기법에 대해 기술한다. 영구자속의 자속은 온도에 따라 변화한다. 동손을 최소화하기 위해 적용되는 Maximum Torque per Ampere (MTPA)는 영구자속의 자속 추정값을 이용하여 구현되기 때문에 영구자석의 자속이 변화할 경우, 토크 오차가 발생한다. 본 논문에서는 쇄교자속관측기를 이용하여 영구자석의 자속을 실시간으로 추정하여 제어알고리즘에 적용함으로써 토크 오차를 보상하는 기법을 제안한다. 제안된 기법은 시뮬레이션과 실험을 통하여 검증하였다.

A Comprehensive Study of Interaction of Magnetic Flux Ropes Leading to Solar Eruption

  • 이시백;최광선;전홍달;김갑성
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.54.1-54.1
    • /
    • 2019
  • Solar observations often show that interaction of more than one flux rope is involved in solar eruptions. In this regard, Lau and Finn (1996) intensively studied the interaction of two flux ropes, which reside in between two parallel planes each mimicking one polarity region of the solar photosphere. However, this geometry is quite far from the real solar situation, in which all feet of flux tubes are rooted in one surface only. In this paper, we study the interaction of two flux ropes in a semi-infinite region above a plane representing the solar photosphere. Four cases of the flux rope interaction are investigated in our MHD simulation study: (1) parallel axial fields and parallel axial currents (co-helicity), (2) antiparallel axial fields and parallel axial currents (counter-helicity), (3) parallel axial fields and antiparallel axial currents (counter-helicity), and (4) antiparallel axial fields and antiparallel axial currents (co-helicity). Each case consists of four or six subcases according to the background field direction relative to the flux ropes and the relative positions of the flux rope footpoints. In our simulations, all the cases eventually show eruptive behaviors, but their degree of explosiveness and field topological evolutions are quite different. We construct artificial emission measure maps based on the simulations and compare them with images of CME observations, which provides us with information on what field configurations may generate certain eruption features.

  • PDF