• 제목/요약/키워드: Flutter control

검색결과 73건 처리시간 0.025초

Aeroelastic stability analysis of a bridge deck with added vanes using a discrete vortex method

  • Taylor, I.;Vezza, M.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.277-290
    • /
    • 2002
  • A two dimensional discrete vortex method (DIVEX) has been developed at the Department of Aerospace Engineering, University of Glasgow, to predict unsteady and incompressible flow fields around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow field that the particles collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and presents the results of calculations on a recent suspension bridge deck section. The results from both the static and flutter analysis of the main deck in isolation are in good agreement with experimental data. A brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented and the results confirm previous analytical and experimental studies. The aeroelastic study is carried out firstly using aerodynamic derivatives extracted from the DIVEX simulations. These results are then assessed further by presenting results from full time-dependent aeroelastic solutions for the original deck and one of the vane cases. In general, the results show good qualitative and quantitative agreement with results from experimental data and demonstrate that DIVEX is a useful design tool in the field of wind engineering.

공탄성 해석 및 제어를 위한 일반화된 비정상 공기력 계산 및 근사화 기법

  • 이상욱;김태욱;황인희
    • 항공우주기술
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 2004
  • 본 연구에서는 MSC/NASTRAN을 이용하여 플러터, 돌풍응답 등의 공탄성 현상에 대한 해석 및 제어에 필요한 일반화된 비정상 공기력 행렬들을 계산하고, 이를 외부 프로그램에서 활용하기 위해 MSC/NASTRAN의 DMAP ALTER를 이용하여 외부 파일로 추출하는 방법을 제시하였다. 또한, 공탄성 해석 및 제어를 위한 지배방정식 구성을 위해 추출된 일반화된 비정상 공기력 행렬들을 최소상태 근사법을 사용하여 근사화하는 방법을 제시하였으며, 이를 단순화된 항공기 날개 구조물 모델에 적용하여 검증하였다.

  • PDF

Robust Adaptive Output Feedback Control Design for a Multi-Input Multi-Output Aeroelastic System

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.179-189
    • /
    • 2011
  • In this paper, robust adaptive control design problem is addressed for a class of parametrically uncertain aeroelastic systems. A full-state robust adaptive controller was designed to suppress aeroelastic vibrations of a nonlinear wing section. The design used leading and trailing edge control actuations. The full state feedback (FSFB) control yielded a global uniformly ultimately bounded result for two-axis vibration suppression. The pitching and plunging displacements were measurable; however, the pitching and plunging rates were not measurable. Thus, a high gain observer was used to modify the FSFB control design to become an output feedback (OFB) design while the stability analysis for the OFB control law was presented. Simulation results demonstrate the efficacy of the multi-input multi-output control toward suppressing aeroelastic vibrations and limit cycle oscillations occurring in pre- and post-flutter velocity regimes.

A Continuous Robust Control Strategy for the Active Aeroelastic Vibration Suppression of Supersonic Lifting Surfaces

  • Zhang, K.;Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.210-220
    • /
    • 2012
  • The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating in supersonic flight speed regimes is discussed in this paper. A novel continuous robust controller design yields asymptotically stable vibration suppression in both the pitching and plunging degrees of freedom using the flap deflection as a control input. The controller also ensures that all system states remain bounded at all times during closed-loop operation. A Lyapunov method is used to obtain the global asymptotic stability result. The unsteady aerodynamic load is considered by resourcing to the non-linear Piston Theory Aerodynamics (PTA) modified to account for the effect of the flap deflection. Simulation results demonstrate the performance of the robust control strategy in suppressing dynamic aeroelastic instabilities, such as non-linear flutter and limit cycle oscillations.

위성체 유연 보 구조물의 열 안정성 해석 (Thermal Stability Analysis of a Flexible Beam Spacecraft Appendage)

  • 윤일성;송오섭
    • Composites Research
    • /
    • 제15권3호
    • /
    • pp.18-29
    • /
    • 2002
  • 본 논문에서는 얇은 벽보로 모델링 한 위성체 구조물에 입사되는 열 하중에 의해 발생하는 굽힘 진동과 열적 플러터에 대하여 연구하였다. 복합재료 얇은 벽보는 회전관성과 1차, 2차 와핑, 전단변형의 비고전적 요소를 포함한다. CUS구조물로 모델링한 복합재료 얇은 벽보의 열 진동 특성은 적층 순서와 섬유강화복합재료의 방향특성인자로부터 기인된 종방향 굽힘과 횡방향 굽힘의 언성과 관련하여 연구되었다. 수치 해석적인 방법으로 열적 플러터의 안정성 영역의경계값을 구하였으며, 태양 열 플럭스의 입사각, 감쇠계수, 섬유각의 변화에 의한 보의 변위를 구하였다. 주 구조물에 압전소자를 부착하여, 감지기와 작동기로 사용하여 제어해석을 수행하였다.

구동장치 연동된 조종날개 혼합동강성 실험 및 특성보정 (Experiments of Mixed Dynamic Stiffness of a Control Fin and Actuator and Correction of Experiment Results)

  • 신영석;황철규;양해석;이열화
    • 한국군사과학기술학회지
    • /
    • 제7권4호
    • /
    • pp.107-113
    • /
    • 2004
  • In order to model a connection part between a control fin and actuator, the related characteristics of a dynamic stiffness were extracted from experiments. These characteristics include the static stiffness of a control fin and the dynamic stiffness of an actuator, so they are called the mixed dynamic stiffness here. This mixed dynamic stiffness is used as the boundary condition of a control fin connected to an actuator when the flutter characteristics are analyzed. The simulated stiffness of an actuator is corrected from the experiment results and the mixed dynamic is finally formulated in the domain of frequencies.

Fundamental restrictions for the closed-loop control of wind-loaded, slender bridges

  • Kirch, Arno;Peil, Udo
    • Wind and Structures
    • /
    • 제12권5호
    • /
    • pp.457-474
    • /
    • 2009
  • Techniques for stabilising slender bridges under wind loads are presented in this article. A mathematically consistent description of the acting aerodynamic forces is essential when investigating these ideas. Against this background, motion-induced aerodynamic forces are characterised using a linear time-invariant transfer element in terms of rational functions. With the help of these functions, the aeroelastic system can be described in the form of a linear, time-invariant state-space model. It is shown that the divergence wind speed constitutes an upper bound for the application of the selected mechanical actuators. Even active control with full state feedback cannot overcome this limitation. The results are derived and explained with methods of control theory.

Limitations for the control of wind-loaded slender bridges with movable flaps

  • Kirch, Arno;Peil, Udo
    • Wind and Structures
    • /
    • 제15권5호
    • /
    • pp.441-462
    • /
    • 2012
  • This article presents theoretical investigations on techniques for the improvement of the dynamic characteristics of slender bridges under wind action. Aerodynamically effective control shields are applied as controlled actuators. The first part of the article describes the modelling of the uncontrolled aeroelastic system. Acting aerodynamic forces are consistently characterised using linear time-invariant transfer elements in terms of rational functions. On this basis, two configuration levels of the uncontrolled system are represented with linear time-invariant state-space models and investigated. The second part of the article addresses controller design and the behaviour of the controlled aeroelastic system. Both fundamental limits for stabilisation and the efficiency for attenuating the influence of gusts are described for different actuator mechanisms. The results are derived and discussed with methods of control theory.

Aeroelastic Response of an Airfoil-Flap System Exposed to Time-Dependent Disturbances

  • Shim, Jae-Hong;Sungsoo Na;Chung, Chan-Hun
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.560-572
    • /
    • 2004
  • Aeroelastic response and control of airfoil-flap system exposed to sonic-boom, blast and gust loads in an incompressible subsonic flowfield are addressed. Analytical analysis and pertinent numerical simulations of the aeroelastic response of 3-DOF airfoil featuring plunging-pitching-flapping coupled motion subjected to gust and explosive pressures in terms of important characteristic parameters specifying configuration envelope are presented. The comparisons of uncontrolled aeroelastic response with controlled one of the wing obtained by feedback control methodology are supplied, which is implemented through the flap torque to suppress the flutter instability and enhance the subcritical aeroelastic response to time-dependent excitations.

부구조물 합성법을 이용한 접는 미사일 조종날개 모델 수립 (Model Establishment of a Deployable Missile Control Fin Using Substructure Synthesis Method)

  • 김대관;배재성;이인;한재흥
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.813-820
    • /
    • 2005
  • A deployable missile control fin has some structural nonlinearities because of the worn or loose hinges and the manufacturing tolerance. The structural nonlinearity cannot be eliminated completely, and exerts significant effects on the static and dynamic characteristics of the control fin. Thus, It is important to establish the accurate deployable missile control fin model. In the present study, the nonlinear dynamic model of 4he deployable missile control fin is developed using a substructure synthesis method. The deployable missile control fin can be subdivided Into two substructures represented by linear dynamic models and a nonlinear hinge with structural nonlinearities. The nonlinear hinge model is established by using a system identification method, and the substructure modes are improved using the Frequency Response Method. A substructure synthesis method Is expanded to couple the substructure models and the nonlinear hinge model, and the nonlinear dynamic model of the fin is developed. Finally, the established nonlinear dynamic model of the deployable missile control fin is verified by dynamic tests. The established model is In good agreement with test results, showing that the present approach is useful in aeroelastic stability analyses such as time-domain nonlinear flutter analysis.