• Title/Summary/Keyword: Fluoride glasses

Search Result 16, Processing Time 0.022 seconds

Ho3+-Doped Amorphous Dielectrics:Emission and Excitation Spectra of the 1.6 μm Fluorescence (Ho3+ 첨가 비정질 유전체 : 1.6μm 헝광의 방출 및 여기 스펙트럼)

  • 최용규
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.618-622
    • /
    • 2004
  • Excitation spectra of the 1.6 rm emission originating from $Ho^{3+}$$^{5}$ I$_{5}$ \longrightarrow$^{5}$ I$_{7}$ transition in fluoride, sulfide, and selenide glasses were measured at wavelengths around 900nm where the fluorescing $^{5}$ I$_{5}$ level is located. In specific energy range where the frequency upconversion populating $^{5}$ F$_{1}$ state happens, the excitation efficiency of the 1.6 fm emission was deteriorated in fluoride and sulfide hosts. In selenide however spectral line shapes of the excitation spectrum and the '$^{5}$ I$_{8}$ \longrightarrow$^{5}$ I$_{5}$ absorption spectrum looked seemingly identical to each other. Differences in optical nonlinearity as well as electronic band gap energy of the host glasses used are responsible for the experimental observations. On the other hand, codoping of rare earths such as Tb$^{3+}$, Dy$^{3+}$, Eu$^{3+}$, and Nd$^{3+}$ was effective in decreasint the terminating $^{5}$ I$_{7}$ level lifetime. However, at the same time, some of the codopants increased unnecessary absorption at the 1.6 $\mu$m wavelengths via their ground state absorption. Though the lifetime quenching effect of Eu$^{3+}$ was moderate, it exhibited no additional extrinsic absorption at the 1.6 $\mu$m band.EX>m band.

Study on Effect of Fluorine Content on the Synthesis of Machinable Glass-ceramics Based on Fluorophlogopite Crystals (플루오르함량이 Fluorophologopite 결정들을 함유하고 있는 기계 가공성 결정화유리의 합성에 미치는 영향에 관한 연구)

  • 정형진;김병호;신용규
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.4
    • /
    • pp.1-10
    • /
    • 1986
  • The crystallization behaviour and the machinability of mica glass-ceramics with the content of F1 were studied. The material was made from the $K_2O-MgO-Al_2O_3-B_2O_3-SiO_2-F$ glasses by the heattreatment at 80$0^{\circ}C$-110$0^{\circ}C$ where the content of F-1 was changed in the range from 1, 3wt% to 6.1wt%. X-ray diffraction phase analysis and optical observation were adopted to study the crystallization behaviour. The machinability was measured by a manual sawing test and MOR. The crystal phases of these glass-ceramics identified by XRD were chondrodite fluoborite and norbergite at low temperature but fluorophlogopite at high temperature. The crystallization of glasses containing 1.3wt% -2.5wt% F-1 were predominately controlled by surface crystallization while the crystallization of glasses containing 3.8 wt% -6.1wt% F-1 were controlled by volume crystallization. Among the test the best machinability and strength value were obtained from those specimens contained fluoride 4.2wt% -4.4wt% and when the heattreatment was performed at 95$0^{\circ}C$-110$0^{\circ}C$ for 2 hours.

  • PDF

Characteristics of Carbon Tetrafluoride Plasma Resistance of Various Glasses

  • Choi, Jae Ho;Han, Yoon Soo;Lee, Sung Min;Park, Hyung Bin;Choi, Sung Churl;Kim, Hyeong Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.700-706
    • /
    • 2016
  • Etch rate, surface roughness and microstructure as plasma resistance were evaluated for six kinds of oxide glass with different compositions. Borosilicate glass (BS) was found to be etched at the highest etch rate and zinc aluminum phosphate glass (ZAP) showed a relatively lower etch rate than borosilicate. On the other hand, the etching rate of calcium aluminosilicate glass (CAS) was measured to be similar to that of sintered alumina while yttrium aluminosilicate glass (YAS) showed the lowest etch rate. Such different etch rates by mixture plasma as a function of glass compositions was dependent on whether or not fluoride compounds were formed on glass and sublimated in high vacuum. Especially, in view that $CaF_2$ and $YF_3$ with high sublimation points were formed on the surface of CAS and YAS glasses, both CAS and YAS glasses were considered to be a good candidate for protective coating materials on the damaged polycrystalline ceramics parts in semi-conductor and display processes.

Hydroxyapatite Formation on Fluoride Bioactive Glasses coated on Alumina (알루미나에 코팅된 불화물 생체유리에의 수산화 아파타이트 형성)

  • 안현수;이은성;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1087-1093
    • /
    • 1999
  • Bioglass which is one of the surface active bionmaterials has a good biocompatibility but a poor mechanical strength, In the present work therefore two types of fluoride-containing bioglasses were coated on an alumina to improve mechanical strength. Crystallization of the coating layer and the hydroxyapatite formation on the bioactive glass coatings in tris-buffer solution were studied. When bioactive glass coated alumina was heat-treated Na2CaSi3O8 crystal was formed on the layer at lower temperature while wollastonite(CaSIO3) was obtained at higher temperature. Hydroxyapatite forming rate on the coating layer with Na2CaSi3O8 crystal was delayed with SiO2 contents in glass composition. However the hydroxyapatite was developed in 20minutes regardless SiO2 contents when the coating layer crystallized into wollastonite. More amount of P3+ ions were leached out of the coating layer with wollastonite than that with Na2CaSi3O8 crystal while Na+ and Ca2+ ions were leached out more easily from the Na2CaSi3O8 crystal containing coating layer.

  • PDF

Optical Design of the DOTIFS Spectrograph

  • Chung, Haeun;Ramaprakash, A.N.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.100.2-100.2
    • /
    • 2014
  • The DOTIFS is a new multi-object Integral Field Spectrograph (IFS) planned to be designed and built by the Inter-University Center for Astronomy and Astrophysics, Pune, India, (IUCAA) for cassegrain side port of the 3.6m Devasthal Optical Telescope (DOT) being constructed by the Aryabhatta Research Institute of Observational Sciences, Nainital. (ARIES) It is a multi-integral field unit (IFU) spectrograph which has 370-740nm wavelength coverage with spectral resolution R~1200-2400. Sixteen IFUs with microlens arrays and fibers can be deployed on 8 arcmin field. Each IFU has $8.7^{{\prime}{\prime}}{\times}7.4^{{\prime}{\prime}}$ field of view with 144 spaxel elements. 2304 fibers coming from IFUs are dispersed by eight identical spectrographs with all refractive and all spherical optics. In this work, we show optical design of the DOTIFS spectrograph. Expected performance and result of tolerance and thermal analysis are also shown. The optics is comprised of f=520mm collimator, broadband filter, dispersion element and f=195mm camera. Pupil size is determined as 130mm from spectral resolution and budget requirements. To maintain good transmission down to 370nm, calcium fluoride elements and high transmission optical glasses have been used. Volume Phase Holographic grating is selected as a dispersion element to maximize the grating efficiency and to minimize the size of the optics. Detailed optics design report had been documented. The design was finalized through optical design review and now ready for order optics.

  • PDF

Effects of Glass Texturing Structure on the Module Efficiency of Heterojunction Silicon Solar Cells

  • Park, Hyeongsik;Lee, Yoo Jeong;Shin, Myunghun;Lee, Youn-Jung;Lee, Jaesung;Park, Changkyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.102-108
    • /
    • 2018
  • A glass-texturing technique was developed for photovoltaic (PV) module cover glass; periodic honeycomb textures were formed by using a conventional lithography technique and diluted hydrogen fluoride etching solutions. The etching conditions were optimized for three different types of textured structures. In contrast to a flat glass substrate, the textured glasses were structured with etched average surface angles of $31-57^{\circ}$, and large aspect ratios of 0.17-0.47; by using a finite difference time-domain simulation, we show that these textured surfaces increase the amount of scattered light and reduce reflectance on the glass surface. In addition, the optical transmittance of the textured glass was markedly improved by up to 95% for wavelengths ranging from 400 to 1100 nm. Furthermore, applying the textured structures to the cover glass of the PV module with heterojunction with intrinsic thin-layer crystalline silicon solar cells resulted in improvements in the short-circuit current density and module efficiency from 39 to $40.2mA/cm^2$ and from 21.65% to 22.41%, respectively. Considering these results, the proposed method has the potential to further strengthen the industrial and technical competitiveness of crystalline silicon solar cells.