• 제목/요약/키워드: Fluorescent receptor

검색결과 58건 처리시간 0.02초

A Protein Tyrosine Phosphatase Inhibitor, Pervanadate, Inhibits Angiotensin II-Induced β-Arrestin Cleavage

  • Jang, Sei-Heon;Hwang, Si Ae;Kim, Mijin;Yun, Sung-Hae;Kim, Moon-Sook;Karnik, Sadashiva S.;Lee, ChangWoo
    • Molecules and Cells
    • /
    • 제28권1호
    • /
    • pp.25-30
    • /
    • 2009
  • ${\beta}$-Arrestins turn off G protein-mediated signals and initiate distinct G protein-independent signaling pathways. We previously demonstrated that angiotensin $AT_1$ receptorbound ${\beta}$-arrestin 1 is cleaved after $Phe^{388}$ upon angiotensin II stimulation. The mechanism and signaling pathway of angiotensin II-induced ${\beta}$-arrestin cleavage remain largely unknown. Here, we show that protein Tyr phosphatase activity is involved in the regulation of ${\beta}$-arrestin 1 cleavage. Tagging of green fluorescent protein (GFP) either to the N-terminus or C-terminus of ${\beta}$-arrestin 1 induced conformational changes and the cleavage of ${\beta}$-arrestin 1 without angiotensin $AT_1$ receptor activation. Orthovanadate and molybdate, inhibitors of protein Tyr phosphatase, attenuated the cleavage of C-terminal GFP-tagged ${\beta}$-arrestin 1 in vitro. The inhibitory effects of okadaic acid and pyrophosphate, which are inhibitors of protein Ser/Thr phosphatase, were less than those of protein Tyr phosphatase inhibitors. Cell-permeable pervanadate inhibited angiotensin II-induced cleavage of ${\beta}$-arrestin 1 in COS-1 cells. Our findings suggest that Tyr phosphorylation signaling is involved in the regulation of angiotensin II-induced ${\beta}$-arrestin cleavage.

RBL-2H3에서 IgE-dependent Histamine-releasing Factor에 의한 활성산소종 생성에 관한 연구 (Generation of ROS by IgE-Dependent Histamine-Releasing Factor in RBL-2H3 Cells)

  • 주이신;이경림
    • 한국미생물·생명공학회지
    • /
    • 제33권3호
    • /
    • pp.231-235
    • /
    • 2005
  • RBL-2H3 cell에서 HRE에 의하여 histamine이 분비되는 과정에서 ROS가 생성되는지 실험해 본 결과, ROS가 HRF를 처리한지 5분대에 최대치를 보이며 생성되었다가 소멸되는 것을 관찰할 수 있었다. 따라서 HRF가 세포내 second messenger로써의 ROS를 생성하였다고 확인할 수 있었다. 또한 ROS는 단백질 정제 과정에서의 endotoxin오염에 의해 영향을 받지만,본 실험에서 규명한 HRF에 의한 ROS 생성은 endotoxin에 의한 것이 아닌, 순수하게 HRF에 의한 signaling의 결과라는 것도 확인할 수 있었다.

Reduction of Inflammation and Enhancement of Motility after Pancreatic Islet Derived Stem Cell Transplantation Following Spinal Cord Injury

  • Karaoz, Erdal;Tepekoy, Filiz;Yilmaz, Irem;Subasi, Cansu;Kabatas, Serdar
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권2호
    • /
    • pp.153-165
    • /
    • 2019
  • Objective : Spinal cord injury (SCI) is a very serious health problem, usually caused by a trauma and accompanied by elevated levels of inflammation indicators. Stem cell-based therapy is promising some valuable strategies for its functional recovery. Nestin-positive progenitor and/or stem cells (SC) isolated from pancreatic islets (PI) show mesenchymal stem cell (MSC) characteristics. For this reason, we aimed to analyze the effects of rat pancreatic islet derived stem cell (rPI-SC) delivery on functional recovery, as well as the levels of inflammation factors following SCI. Methods : rPI-SCs were isolated, cultured and their MSC characteristics were determined through flow cytometry and immunofluorescence analysis. The experimental rat population was divided into three groups : 1) laminectomy & trauma, 2) laminectomy & trauma & phosphate-buffered saline (PBS), and 3) laminectomy+trauma+SCs. Green fluorescent protein (GFP) labelled rPI-SCs were transplanted into the injured rat spinal cord. Their motilities were evaluated with Basso, Beattie and Bresnahan (BBB) Score. After 4-weeks, spinal cord sections were analyzed for GFP labeled SCs and stained for vimentin, $S100{\beta}$, brain derived neurotrophic factor (BDNF), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), vascular endothelial growth factor (VEGF) and proinflammatory (interleukin [IL]-6, transforming growth factor $[TGF]-{\beta}$, macrophage inflammatory protein [MIP]-2, myeloperoxidase [MPO]) and anti-inflammatory (IL-1 receptor antagonis) factors. Results : rPI-SCs were revealed to display MSC characteristics and express neural and glial cell markers including BDNF, glial fibrillary acidic protein (GFAP), fibronectin, microtubule associated protein-2a,b (MAP2a,b), ${\beta}3$-tubulin and nestin as well as anti-inflammatory prostaglandin E2 receptor, EP3. The BBB scores showed significant motor recovery in group 3. GFP-labelled cells were localized on the injury site. In addition, decreased proinflammatory factor levels and increased intensity of anti-inflammatory factors were determined. Conclusion : Transplantation of PI-SCs might be an effective strategy to improve functional recovery following spinal cord trauma.

Anti-inflammatory, Anti-glycation, Anti-tyrosinase and CDK4 Inhibitory Activities of Alaternin (=7-Hydroxyemodin)

  • Bhatarrai, Grishma;Choi, Jeong-Wook;Seong, Su Hui;Nam, Taek-Jeong;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • 제27권1호
    • /
    • pp.28-35
    • /
    • 2021
  • The aim of this study was to anatomize the therapeutic potential of alaternin (=7-hydroxyemodin) against inflammation, advanced glycation end products (AGEs) formation, tyrosinase, and two cyclin-dependent kinases (CDKs), CDK2 and CDK4, and compare its potency with emodin. Alaternin showed lower cytotoxicity and higher dose-dependent inhibition against lipopolysaccharide (LPS) induced nitric oxide (NO) production with half maximal inhibitory concentration (IC50) of 18.68 µM. Similarly, alaternin efficaciously inhibited biotransformation of fluorescent AGEs and amyloid cross-β structure on the bovine serum albumin (BSA)-glucose-fructose system, five times more than emodin. Interestingly, alaternin also showed selective activity against CDK4 at 170 µM, whereas emodin inhibited both CDK2 and CDK4 at a concentration of 17 and 380 µM respectively. In addition, alaternin showed dose-dependent inhibitory activity against mushroom tyrosinase with inhibition percentage of 35.84 % at 400 µM. Altogether, alaternin with pronounced inhibition against inflammatory mediator (NO), glycated products formation, and targeted inhibition towards CDK4 receptor can be taken as an important candidate to target multiple diseases.

난치성 결핵 환자의 단핵구에서 IFN-$\gamma$ 활성화 효과 및 IFN-$\gamma$ 수용체의 숫적 변화에 대한 연구 (The Priming Effect of IFN-$\gamma$ and Numbers of IFN-$\gamma$ Receptors in Patients with Chronic Refractory Tuberculosis)

  • 이재철;유철규;이춘택;김영환;한성구;심영수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제47권3호
    • /
    • pp.304-310
    • /
    • 1999
  • 연구배경: 결핵에 대한 면역 반응은 T-림프구와 단핵 식세포를 주축으로 하는 세포성 면역 반응이 주률 이루는데 여기에 IFN-$\gamma$와 TNF-$\alpha$등의 cytokine 이 관여하고 있다. IFN-$\gamma$는 주로 T-림프구에서 분비되어 활성화된 단핵구에서의 TNF-$\alpha$생성을 증가시키는 기전을 통해 결핵균 증식을 억제하고 치유에 이르는 과정을 매개하는 것으로 알려져 있다. 효과적인 화학요법에도 불구하고 난치성 결핵으로 이행하는 기전에 IFN-$\gamma$가 관여하는지 규명하고자 본 연구를 시행하였다. 대상 및 방법: 정상 대조군과 최근 결핵으로 진단받아 치료를 시작한 환자, 난치성 결핵 환자에서 혈액을 채취하여 단핵구를 분리하고 아무런 자극을 하지 않은 경우, 12시간 LPS($l{\mu}g/ml$)만으로 자극을 한 경우, IFN-$\gamma$($2{\mu}g/ml$)로 2시간 전처치한 후 12 시간 LPS 자극한 경우로 니누어 TNF-$\alpha$의 농도를 측정, IFN-$\gamma$ 활성화 효과에 변화가 있는지를 살펴보았고 IFN-$\gamma$ 수용체 항제를 이용, IFN-$\gamma$ 활성화 효과의 변화가 IFN-$\gamma$ 수용체의 숫적 변화와 관련이 있는지를 확인하였다. 결과: IFN-$\gamma$ 활성화 효과를 알아보기 위해 LPS 만으로 지극한 경우와 IFN-$\gamma$ 전처치 후 LPS로 자극한 경우에 생성된 TNF-$\alpha$의 비를 구하여 보았을 때 정상 대조군 $13.5{\pm}7.6$, 최근 결핵환자로 진단받은 군 $10.8{\pm}6.4$, 난치성 결핵 환자군 $6.7{\pm}3.9$의 결과를 보였다. 난치성 결핵환자군의 경우 정상대조군에 비해 IFN-$\gamma$의 활성화 효과가 통계적으로 유의하게 감소되어 있음을 알 수 있었다 (p=0.002). IFN-$\gamma$ 수용체수의 감소는 대상 환자 중 난치성 결핵 환자 1명에서 관찰되었다. 결론: 난치성 결핵으로의 이행에 있어 단핵구에서의 IFN-$\gamma$ 활성화 효과의 감소가 중요한 역할을 할 것으로 생각되며 IFN-$\gamma$ 활성화 효과의 감소는 일부 환자의 경우, IFN-$\gamma$ 수용체의 감소와 관련되어 생기는 것으로 판단된다.

  • PDF

양식넙치 멜라닌 농축 호르몬의 특성 (Characterization of Melanin-concentrating Hormone from Olive Flounder (Paralichthys olivaceus))

  • 정인영;전정민;송영환
    • 생명과학회지
    • /
    • 제28권3호
    • /
    • pp.284-292
    • /
    • 2018
  • 멜라닌 농축 호르몬(melanin-concentrating hormone, MCH)은 17개의 아미노산으로 구성된 환형의 시상하부 펩티드로 색소 침착의 조절인자로서 연어에서 처음 분리되었다. 포유동물의 MCH는 19개의 아미노산으로 구성되어 있으며 섭식 및 에너지 항상성을 조절하는데 관여한다. 본 연구에서는 양식넙치의 다양한 조직에서 MCH 유전자의 발현 분포, 멜라닌 함유 세포의 집적, 포유동물 MCH 수용체와 양식넙치 MCH의 상호작용을 조사하였다. Real-time qPCR을 이용하여 뇌, 정소, 난소에서 MCH 유전자의 발현이 나타나는 것을 확인하였고, 수정 후 발달 단계에서도 MCH 유전자의 발현을 확인할 수 있었다. 합성된 연어 sMCH, 포유류 hMCH, 양식넙치 fMCH, dN-fMCH, dC-fMCH를 양식 넙치의 표피에 처리했을 때 다양한 농도에 따라 멜라닌 함유 세포의 집적이 다양하게 나타났다. 연어 sMCH, 포유류 hMCH에 비해 양식넙치 fMCH의 멜라닌 함유세포의 집적도가 36~99.85%로 비역가를 나타났으나 양식넙치 dN-fMCH, dC-fMCH를 처리한 경우 양식넙치 fMCH에 비해 높은 농도에서 집적이 나타나고 짧은 시간에 분산되었다. 또한, 인간 MCH 수용체와 쥐 MCH 수용체가 발현된 포유동물의 세포주에 양식넙치 fMCH를 처리하여 각 수용체와 결합하는 것을 확인하였다. 이러한 결과는 어류에서 발현되는 MCH가 포유동물의 MCH와 유사한 구조를 가지고 있어 MCH 수용체에 대한 새로운 리간드로서 제공될 수 있으며, 향후 어류의 MCH 수용체에 확대 적용할 수 있을 것이다.

위암에서 발견된 돌연변이형 Fas 단백의 기능적 결함 (Functional Defect of the Fas Mutants Detected in Gastric Cancers)

  • 박원상;조용구;김창재;박조현;김영실;김수영;남석우;이석형;유남진;이정용
    • Journal of Gastric Cancer
    • /
    • 제3권4호
    • /
    • pp.186-190
    • /
    • 2003
  • Purpose: The balance between cell proliferation and apoptosis is crucial for homeostatic maintenance in a cell population. Decreased apoptosis or uncontrolled proliferation can lead to cancer. The Fas receptor signal through a cytoplasmic death domain is very important in the apoptotic pathway. To identify the effect of the death domain of the Fas gene in the development and/or progression of gastric cancer, we examined the apoptotic potential of five known Fas mutants detected in gastric cancers. Materials and Methods: A wild-type Fas gene was cloned with cDNA from normal liver tissue and full length Fas was sequenced. Mutants of the gene were generated with sitedirected mutagenesis by using the wild-type gene and specific primers. Wild- and mutant-type genes were transfected to HEK293 cells. Forty-eight hours after transfection the cells were stained with DAPI and cell death was counted under fluorescent microscopy. Results: In wild-type Fas-transfected cells, the percentage of apoptotic cells was $85.9\pm3.6\%$, and significant cell death and classic morphologic signs of apoptosis were observed. However, the percentages of apoptotic cells transfected with N239D, E240G, D244V, and R263H of tumor-derived mutant Fas were $29.5\pm2.08\%,\;28.5\pm3.34\%,\;25.225\pm2.06\%,\;and\;36.625\pm4.49\%$, respectively. Conclusion: These results suggest that inactivation of Fas caused by mutations in the death domain of the Fas gene may be one of the possible escape mechanisms against Fas-mediated apoptosis and that inactivating mutation of the Fas may contribute to the development or progression of gastric cancers.

  • PDF

Analysis of CEA Expression and EGFR Mutation Status in Non-small Cell Lung Cancers

  • Yang, Zhong-Ming;Ding, Xian-Ping;Pen, Lei;Mei, Lin;Liu, Ting
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3451-3455
    • /
    • 2014
  • Background: The serum carcinoembryonic antigen (CEA) level can reflect tumor growth, recurrence and metastasis. It has been reported that epidermal growth factor receptor (EGFR) mutations in exons 19 and 21may have an important relationship with tumor cell sensitivity to EGFR-TKI therapy. In this study, we investigated the clinical value of EGFR mutations and serum CEA in patients with non-small cell lung cancer (NSCLC). Materials and Methods: The presence of mutations in EGFR exons 19 and 21 in the tissue samples of 315 patients with NSCLC was detected with real-time fluorescent PCR technology, while the serum CEA level in cases who had not yet undergone surgery, radiotherapy, chemotherapy and targeted therapy were assessed by electrochemical luminescence. Results: The mutation rates in EGFR exons 19 and 21 were 23.2% and 14.9%, respectively, with the two combined in 3.81%. Measured prior to the start of surgery, radiotherapy, chemotherapy and targeted treatment, serum CEA levels were abnormally high in 54.3% of the patients. In those with a serum CEA level <5 ng/mL, the EGFR mutation rate was 18.8%, while with 5~19 ng/mL and ${\geq}20ng/mL$, the rates were 36.4% and 62.5%. In addition, in the cohort of patients with the CEA level being 20~49 ng/mL, the EGFR mutation rate was 85.7%, while in those with the CEA level ${\geq}50ng/mL$, the EGFR mutation rate was only 20.0%, approximately the same as in cases with the CEA level<5 ng/mL. Conclusions: There is a positive correlation between serum CEA expression level and EGFR mutation status in NSCLC patients, namely the EGFR mutation-positive rate increases as the serum CEA expression level rises within a certain range (${\geq}20ng/mL$, especially 20~49 ng/mL). If patient samples are not suitable for EGFR mutation testing, or cannot be obtained at all, testing serum CEA levels might be a simple and easy screening method. Hence, for the NSCLC patients with high serum CEA level (${\geq}20ng/mL$, especially 20~49 ng/mL), it is worthy of attempting EGFR-TKI treatment, which may achieve better clinical efficacy and quality of life.

Mechanism underlying NO-induced apoptosis in human gingival fibroblasts

  • Hwang, In-Nam;Jeong, Yeon-Jin;Jung, Ji-Yeon;Lee, Jin-Ha;Kim, Kang-Moon;Kim, Won-Jae
    • International Journal of Oral Biology
    • /
    • 제34권1호
    • /
    • pp.7-14
    • /
    • 2009
  • Nitric oxide (NO) acts as an intracellular messenger at the physiological level but can be cytotoxic at high concentrations. The cells within periodontal tissues, such as gingival and periodontal fibroblasts, contain nitric oxide syntheses and produce high concentrations of NO when exposed to bacterial lipopolysaccharides and cytokines. However, the cellular mechanisms underlying NO-induced cytotoxicity in periodontal tissues are unclear at present. In our current study, we examined the NO-induced cytotoxic mechanisms in human gingival fibroblasts (HGF). Cell viability and the levels of reactive oxygen species (ROS) were determined using a MTT assay and a fluorescent spectrometer, respectively. The morphological changes in the cells were examined by Diff-Quick staining. Expression of the Bcl-2 family and Fas was determined by RT-PCR or western blotting. The activity of caspase-3, -8 and -9 was assessed using a spectrophotometer. Sodium nitroprusside (SNP), a NO donor, decreased the cell viability of the HGF cells in a dose- and time-dependent manner. SNP enhanced the production of ROS, which was ameliorated by NAC, a free radical scavenger. ODQ, a soluble guanylate cyclase inhibitor, did not block the SNP-induced decrease in cell viability. SNP also caused apoptotic morphological changes, including cell shrinkage, chromatin condensation, and DNA fragmentation. The expression of Bax, a member of the proapoptotic Bcl-2 family, was upregulated in the SNP-treated HGF cells, whereas the expression of Bcl-2, a member of the anti-apoptotic Bcl-2 family, was downregulated. SNP augmented the release of cytochrome c from the mitochondria into the cytosol and enhanced the activity of caspase-8, -9, and -3. SNP also upregulated Fas, a component of the death receptor assembly. These results suggest that NO induces apoptosis in human gingival fibroblast via ROS and the Bcl-2 family through both mitochondrial- and death receptor-mediated pathways. Our data also indicate that the cyclic GMP pathway is not involved in NO-induced apoptosis.

Construction of Glomerular Epithelial Cells Expressing Both Immune Tolerance and GFP Genes and Application to Cell Therapy by Cell Transplantation

  • Ohga, Masahiro;Ogura, Mariko;Matsumura, Mastoshi;Wang, Pi-Chao
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권5호
    • /
    • pp.303-310
    • /
    • 2002
  • Cell therapy applied to wound healing or tissue regeneration presents a revolutionary realm to which principles of gene engineering and delivery may be applied. One promising application is the transplantation of cells into the wounded tissue to help the tissue repair. However, when cells are transplanted from in vitro to in vivo, immune rejection occurs due to the immune response triggered by the activation of T-cell, and the transplanted cells are destroyed by the attack of activated T-cell and lose their function. Immune suppressant such as FK506 is commonly used to suppress immune rejection during transplantation. However, such kind of immune suppressants not only suppresses immune rejection in the periphery of transplanted cells but also suppresses whole immune response system against pathogenic infection. In order to solve this problem, we developed a method to protect the desired cells from immune rejection without impairing whole immune system during cell transplantation. Previously, we reported the success of constructing glomerular epithelial cells for removal of immune complex, in which complement receptor of type 1 (CR1) was over-expressed on the membrane of renal glomerular epithelial cells and could bind immune complex of DNA/anti-DNA-antibody to remove immune complex through phagocy-tosis [1]. Attempting to apply the CR1-expressing cells to cell therapy and evade immune rejection during cell transplantation, we constructed three plasmids containing genes encoding a soluble fusion protein of cytolytic T lymphocyte associated antigen-4 (CTLA4Ig) and an enhanced green fluorescent protein (EGFP). The plasmids were transfected to the above-mentioned glomerular epithelial cells to express both genes simultaneously. Using the clone cells for cell transplantation showed that mice with autoimmune disease prolonged their life significantly as compared with the control mice, and two injections of the cells at the beginning of two weeks resulted in remarkable survivability, whereas it requires half a year and 50 administrations of proteins purified from the same amount of cells to achieve the same effect.