• Title/Summary/Keyword: Fluorescence of droplet

Search Result 21, Processing Time 0.02 seconds

Visualization of Gasoline Sprays Via a Simultaneous Inaging of Fluorescence and Scattering Lights (형광, 산란광 동시 촬열법을 이용한 가솔린 분무의 거동에 관한 연구)

  • 원영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.167-174
    • /
    • 1997
  • The penetration depth and the size distribution of the droplets of fuel sprays are important in the operation of spark-ignition MPI engines. A fluorescence/scattering image technique for droplet sizing was applied to measure th edroplet size distribution in non-evaporating gasoline sprays. The fluorescence and scattering lights were imaged simultaneously by the two-dimensional visualization system composed of a laser sheet, a doubling prism, optical filters, and a CCD camera. Quantitative droplet size distributions were extracted from evaluating the ratio of the two light densities. The mean droplet size measured by the fluorescence/scattering technique was compared with the result obtained by the enlarged photographs of droplets. The fluorescence/scattering image technique also gives the useful information of the characteristics of droplet impingement in a inclined wall.

  • PDF

Development of a Total Internal Reflection Fluorescence (TIRF) Microscopy for Precise Imaging the Drying Pattern of a Sessile Droplet (고착 액적 증발면의 정밀 관측을 위한 전반사 형광 현미경 기법 개발)

  • Wonho Cho;Jinkee Lee
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.65-74
    • /
    • 2023
  • Compared to epifluorescence(EPI) microscopy which captures fluorescence from the entire depth of sample, total internal reflection fluorescence(TIRF) can selectively visualize only a single surface of it. TIRF uses a thin evanescent field generated by the total internal reflection of laser light on surface. However, conventional TIRF system are designed for total internal reflection to occur at the upper surface of sample, making them unsuitable for sessile droplet imaging. We designed a TIRF system suitable for a sessile droplet imaging by utilizing slide glass as a lightguide. We presented the details for constructing the TIRF system using a prism, slide glass, air slit, and optical trap. Then, we compared the TIRF with EPI by imaging the droplet with fluorescent particles during its drying process. As a result, TIRF allows us to distinctly visualize the drying pattern on the bottom surface of droplet.

Average Droplet Size Distribution of a GDI Spray by Simultaneous Fluorescence/Scattering Image Technique (형과/산란광 동시 측정에 의한 GDI 분무의 평균 입경 분포에 관한 연구)

  • Gwak, Su-Min;Ryu, Gyeong-Hun;Choe, Dong-Seok;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.868-875
    • /
    • 2001
  • The objective of this study is to investigate the average droplet size distributions of a GDI spray by simultaneous fluorescence/scattering image technique. GDI engine is recently very popular because of high engine efficiency and low emissions. However, the injectors must have good spray characteristics because the fuel is directly injected into the cylinder. The fuel mixtures used in this study were 2% of fluorobenzene, 9% of DEMA(diethyl-methyl-amine) and 89% of hexane by volume. The system for obtaining 2-D fluorescence/scattering images of fuel spray was constituted of a laser sheet, a doubling prism, optical filters, and an ICCD camera. Using the ratio of the fluorescence to the scattering intensities, SMD distributions were obtained. SMD measured by the technique was compared with that obtained by PDA. It was found that average droplet size was bigger at spray center in the early stage of injection and at the outer periphery of the spray in the late stage of injection.

An Experimental Study on Angled Injection and Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.486-491
    • /
    • 2008
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomizer internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD(Sauter Mean Diameters) distribution by using PLLIF(Planar Liquid Laser Induced Fluorescence) technique. The objectives of this research are getting a droplet distribution and drop size measurement of each condition and compare with the other flows effect. As the result, This research have been showed the droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects and normalized distance from the injector exit length.(x/d, y/d)There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (아음속 수직분사제트에서 액적크기 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomize. internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD (Sauter Mean Diameters) distribution by using Planar Liquid Laser Induced Fluorescence technique. The objectives of this research are get a droplet distributions and drop size measurements of each condition and compare with the other flow effects. As the result, This research has been showned that droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects, and normalized distance from the injector exit length(x/d, y/d). There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

Visualization of Breakup and Atomization Processes in Non-evaporating Diesel Sprays (비증발 디젤분무의 분열과 미립화 과정의 가시화)

  • 원영호;김우태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • Two-dimensional laser visualization methods have been used in the study of breakup and atomization processes of non-evaporating diesel sprays. A single-hole spray injected into a quiescent atmospheric environment was visualized by the LIF(Laser Induced Fluorescence) and scattering technique. The LIF technique could be implemented to take the images which are magnified enough to show the shape of liquid ligaments and small droplets. The spontaneous scattering and fluorescent images of sprays were also taken to investigate the atomization of droplets. In the tip and periphery of a spray. the scattering light is bright and the ratio of fluorescent/scattering intensity is lower. This characteristics indicate the very high number density of small droplets which are well atomized.

Application of Fluorescence/Scattering Technique to the Measurement of Spray Droplet Size in GDI Injector (직접 분사식 가솔린 인젝터 분무의 입경 측정에 형광/산란광법의 적용)

  • Kwak, Soo-Min;Ryu, Kyeong-Hun;Choi, Bong-Seok;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.353-358
    • /
    • 2000
  • To achieve the requirement for high fuel economy and low emissions, the research for GDI engines is recently very brisk in the whole world. This study was performed to measure distribution of average particle size in non-evaporating spray. The 2-D fluorescence/scattering images of fuel spray were captured simultaneously by visualization system composed of a laser sheet, a doubling prism, optical filters, and an ICCD camera. Using the ratio of the two light intensities, particle size distribution was obtained. The SMD measured by fluorescence/scattering technique was compared with it obtained by PDA. The experimental results show that the spray structure of GDI injector and temporal SMD distribution.

  • PDF

Comparison of Morphology of Deposits on SiC Filaments with LIF Image in Propane/Air Laminar Diffusion Flames in an Oxidizer Deficient Environment (산화제 결핍 상태의 프로판 층류 확산화염에서 LIF 이미지와 SiC 필라멘트 부착물의 형태 비교)

  • Shim, Sung-Hoon;Yoo, Chang-Jong;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • The morphology of deposits on $15-{\mu}m$ thin SiC filaments has been investigated with SEM and compared with UV-excited laser induced broadband fluorescences in co-flowing, propane laminar diffusion flames in a reduced oxidizer environment. The homogeneous morphology of droplet-like deposits inner flame zone and the agglomeration of condensed-phase deposits and the transition to soots from grown up droplet-like precursors with approaching the flame surface can be observed in a barely sooting flame. The average size of the mature soots deposited in the luminous flame edge is scarcely dependent on their axial position in a confined flame under reduced oxidizer condition. A double structure of PAH fluorescence is observed in near-extinction flames with further decreasing of oxidizer. A comparison of the PAH fluorescence with the morphologies of deposits indicates that appearance of the "dark" hollow zone is caused by a decreased number density of developed liquid-phase large molecules and the outer weak fluorescence zone is caused by the diffusion of gas-phase small molecules.

  • PDF

Internal flow visualization of an evaporating droplet placed on heated metal plate (가열된 금속표면에 놓인 증발하는 액적의 내부유동 가시화)

  • Park, Chang-Seok;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • This study aims to visualize the Marangoni flow inside a droplet placed on heated hydrophobic surface and to measure its internal velocity field. The experimental result shows that the internal velocity increases with the increase of the plate temperature. In addition, the temperature difference induces the initial flow and drives the Marangoni circulation inside the droplet as soon as the evaporation starts (i.e. the thermal Marangoni flow). The fluorescence particles in the droplet trace two large-scale counter-rotating vortex pairs yielding the downwards flow along the vertical central axis. These vortex pairs gradually become small and move towards the contact line as time goes by, and this Marangoni flow sustains only for a half of the total evaporation time.

Automated Bacterial Cell Counting Method in a Droplet Using ImageJ (이미지 분석 프로그램을 이용한 액적 내 세포 계수 방법)

  • Jingyeong Kim;Jae Seong Kim;Chang-Soo Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.247-257
    • /
    • 2023
  • Precise counting of cell number stands in important position within clinical and research laboratories. Conventional methods such as hemocytometer, migration/invasion assay, or automated cell counters have limited in analytical time, cost, and accuracy., which needs an alternative way with time-efficient in-situ approach to broaden the application avenue. Here, we present simple coding-based cell counting method using image analysis tool, freely available image software (ImageJ). Firstly, we encapsulated RFP-expressing bacteria in a droplet using microfluidic device and automatically performed fluorescence image-based analysis for the quantification of cell numbers. Also, time-lapse images were captured for tracking the change of cell numbers in a droplet containing different concentrations of antibiotics. This study confirms that our approach is approximately 15 times faster and provides more accurate number of cells in a droplet than the external analysis program method. We envision that it can be used to the development of high-throughput image-based cell counting analysis.