• Title/Summary/Keyword: Fluorescence in-situ hybridization (FISH)

Search Result 168, Processing Time 0.031 seconds

혐기성 SBR을 이용한 anammox 미생물 배양 및 fluorescence in situ hybridization (FISH)을 통 미생물 군집 분석

  • Han, Dong-U;Yun, Ho-Jun;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.286-289
    • /
    • 2001
  • Anaerobic ammonium oxidation with nitrite to $N_2$(anammox) is a recently discovered microbial reaction with interesting potential for nitrogen removal from wastewater. Here we investigated the microbial community structure in the sequencing batch reactor(SBR) with an anammox activity. The SBR was optimized for the enrichment of a very slowly growing microbial community and showed that possibility of anaerobic ammonium oxidation. Fluorescence in situ hybridization(FISH) analysis revealed that anaerobic ammonium oxidizers were Candidatus Brocadia anammoxidans and Candidatus Kuenenia stuttgartiensis. Furthermore, Nitrosomol1as spp. of the ${\beta}$ -subclass of Proteobacteria was also present within the anaerobic SBR microorganisms.

  • PDF

Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals abundance and spatial organization of methanogens in thermophilic sludge granules

  • Lee, Yu-Jin;Kim, Hyo-Seop;An, Yeong-Hui;Park, Seong-Hun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.508-511
    • /
    • 2000
  • In situ hybridization with fluorescent oligonucleotides(FISH) was used to detect and localize microorganisms in the granules of lab-scale upflow anaerobic sludge blanket(UASB) reactors. An UASB reactor was seeded with mesophilically-grown($35^{\circ}\;C$) granular sludge, and thermophilically($55^{\circ}\;C$) operated by feeding with a synthetic wastewater. Sections of the granules were hybridized with 16S rRNA-targeted oligonucleotide probes for Eubacteria, Archaeabacteria, and specific phylogenetic groups of methanogens. FISH clearly showed the layed structure of thermophilic granules, which was consisted of outer bacterial cells and inner archaeal cells. Methanoseata-, Methanosarcina-like cells were also found to be localized inside the granules. These results demonstrated FISH was useful in studying the spatial organizations of methanogens and in situ morphologies and metabolic functions in thermophilic granular sludges.

  • PDF

Determination of HER2 Gene Amplification in Breast Cancer using Dual-color Silver Enhanced in situ Hybridization (dc-SISH) and Comparison with Fluorescence ISH (FISH)

  • Unal, Betul;Karaveli, Fatma Seyda;Pestereli, Hadice Elif;Erdogan, Gulgun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6131-6134
    • /
    • 2013
  • Background: The two basic methods that are currently accepted to identify the HER2 status are immunohistochemistry and flyorescence in situ hybridization (FISH). The aim of this study was to perform the dual-color silver in situ hybridization (dc-SISH) technique as an alternative to FISH. Materials and Methods: A total of 40 invasive breast carcinoma cases were assessed for HER2 gene amplification by FISH and dual-color SISH. Results: Significant correlation was found in the HER2 expression results obtained with the two approaches (p=0.001, p<0.05). The concordance rate was 92.3%. Conclusions: Foutine practical use of the dc-SISH method, which is much easier to apply, score, and evaluate, has many advantages. HER2 and CEN17 status can be evaluated simultaneously with the newly developed "Dual-Color Probe". All these specifications and the reliable results obtained support the widespread use of SISH technique in clinical practice.

Design, Optimization and Verification of 16S rRNA Oligonucleotide Probes of Fluorescence in-situ Hybridization for Targeting Clostridium spp. and Clostridium kluyveri

  • Hu, Lintao;Huang, Jun;Li, Hui;Jin, Yao;Wu, Chongde;Zhou, Rongqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1823-1833
    • /
    • 2018
  • Fluorescence in-situ hybridization (FISH) is a common and popular method used to investigate microbial communities in natural and engineered environments. In this study, two specific 16S rRNA-targeted oligonucleotide probes, CLZ and KCLZ, were designed and verified to quantify the genus Clostridium and the species Clostridium kluyveri. The optimal concentration of hybridization buffer solution for both probes was 30% (w/v). The specificity of the designed probes was high due to the use of pellets from pure reference strains. Feasibility was tested using samples of Chinese liquor from the famed Luzhou manufacturing cellar. The effectiveness of detecting target cells appears to vary widely in different environments. In pit mud, the detection effectiveness of the target cell by probes CLZ and KCLZ was 49.11% and 32.14%, respectively. Quantitative analysis by FISH technique of microbes in pit mud and fermented grains showed consistency with the results detected by qPCR and PCR-DGGE techniques, which showed that the probes CLZ and KCLZ were suitable to analyze the biomass of Clostridium spp. and C. kluyveri during liquor fermentation. Therefore, this study provides a method for quantitative analysis of Clostridium spp. and C. kluyveri and monitoring their community dynamics in microecosystems.

The Optimization of Human Sperm Decondensation Procedure for Fluorescence in Situ Hybridization (Fluorescence in Situ Hybridization 시행을 위한 인간정자 탈응축법의 적정화)

  • Pang, Myung-Geol
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.3
    • /
    • pp.369-375
    • /
    • 1997
  • Studies were conducted to determine the efficiency of decondensation protocols. Sperm obtained from seven normal donors was immediately washed after liquefaction and then decondensed using the method of West et al. (1989) and my original protocol. My optimized protocol entailed mixing 1 ml aliquots of semen with 4 ml phosphate buffered saline (PBS). Following centrifugation, pellets were resuspended in 1 ml PBS containing 6 mM EDTA. After centrifugation, pellets were resuspended in 1 ml PBS containing 2 mM dithiothreitol at $37^{\circ}C$ for 45 min. Following mixing with 2 ml PBS and centrifugation, pellets were resuspended by vortexing. While vortexing, 5 ml of fixative were gently added. Slide preparation was accomplished using the smear method and it was stored at $4^{\circ}C$. When comparing these protocols, the degree of sperm decondensation and head swelling was monitored by measuring nuclear length, area, perimeter, and degree of roundness using FISH analysis software. Apparent copy number for chromosome 1 and, separately, for the sex chromosomes was determined by FISH using satellite DNA probes for loci DIZ1, DXZ1 and DYZ3. Sperm treated by my decondensation protocol showed significant increases (p<0.05) in length, area, perimeter, and degree of roundness. There was a significant decrease (p<0.05) in the frequency of nuclei displaying no signal but no change in the frequency of nuclei with two signals in samples decondensed by my protocol. My data suggested that decondensation using my original protocol may lower the frequency of cells with spurious "nullisomy" due to hybridization failure without inducing spurious "disomy" resulting from increased distances between split signals.

  • PDF

Rapid Sex Identification of Chicken by Fluorescence In Situ Hybridization Using a W Chromosome-specific DNA Probe

  • Sohn, S.H.;Lee, C.Y.;Ryu, E.K.;Han, J.Y.;Multani, A.S.;Pathak, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1531-1535
    • /
    • 2002
  • It has been known that the sex of chicken cells can be most accurately identified by fluorescence in situ hybridization (FISH). However, the presently available FISH has not been widely used for sex identification, because the procedures for cell preparation and FISH itself are complicated and time-consuming. The present study was undertaken to test a rapid FISH procedure for sexing chicken. A FISH probe was simultaneously synthesized and labeled with digoxigenin by polymerase chain reaction (PCR) targeting a 416 bp segment of the 717 bp XhoI family fragment which is repeated over 10 thousand times exclusively in the W chromosome. Sexing by FISH was performed on cytological preparations of early embryos, adult lymphocytes and feather pulps of newly hatched chicks. The DNA probe hybridized to all types of uncultured interphase as well as metaphase female but not male cells that had been examined. Moreover, consistent with the known site of the XhoI family, the hybridization signal was localized to the pericentromeric region of the W chromosome. We, therefore, conclude that the present PCR-based FISH can be used as a rapid and reliable sex identification procedure for chicken.

Molecular Identification of the Toxic Alexandrium tamiyavanichii (Dinophyceae) by the Whole-cell FISH Method

  • Kim Choong-Jae;Yoshimatsu Sada-Akfi;Sako Yoshihiko;Kim Chang-Hoon
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.4
    • /
    • pp.175-183
    • /
    • 2004
  • The dinoflagellate Alexandrium tamiyavanichii Balech, a producer of toxins causing paralytic shellfish poisoning (PSP), has recently been considered as one of main organisms responsible for toxication of shellfish in Japan. In this study, A. tamiyavanichii was subjected to a molecular phylogenetic analysis inferred from 28S rDNA D1-D2 sequences and a species-specific LSU rRNA-targeted oligonucleotide DNA probe was designed to identify A. tamiyavanichii using the whole cell-FISH (fluorescence in situ hybridization). The sequences of the 28S rDNA D1-D2 region of A. tamiyavanichii showed no difference from A. cohorticular AF1746l4 (present name A. tamiyavanichii) and formed a distinct clade from the 'tamarensis species complex'. The probe, TAMID2, reacted specifically with A. tamiyavanichii cultured cells, without any cross-reaction with other species belonging to the same genus, including A. tamarense, A. catenella, A. affine, A. fraterculus, A. insuetum and A. pseudogonyaulax. In a test of cross-reactivity with a field sample, TAMID2 reacted consistently with only A. tamiyavanichii, indicating that the present protocol involving the TAMID2 probe might be useful for detecting toxic A. tamiyavanichii in a simple and rapid manner.

Deciphering Functions of Uncultured Microorganisms (난배양성 미생물의 기능 분석 방법)

  • Kim, Jeong-Myeong;Song, Sae-Mi;Jeon, Che-Ok
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Microbes within complex communities show quite different physiology from pure cultured microbes. However, historically the study of microbes has focused on single species in pure culture and most of microbes are unculturable in our labs, so understanding of complex communities lags behind understanding of pure cultured cells. Methodologies including stable isotope probing (SIP), a combination of fluorescence in situ hybridization (FISH) and microautoradiography (MAR), isotope micrarray, and metagenomics have given insights into the uncultivated majority to link phylogenetic and functional information. Here, we review some of the most recent literatures, with an emphasis on methodological improvements to the sensitivity and utilities of these methods to link phylogeny and function in complex microbial communities.

1p36 deletion syndrome confirmed by fluorescence in situ hybridization and array-comparative genomic hybridization analysis

  • Kang, Dong Soo;Shin, Eunsim;Yu, Jeesuk
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.14-18
    • /
    • 2016
  • Pediatric epilepsy can be caused by various conditions, including specific syndromes. 1p36 deletion syndrome is reported in 1 in 5,000-10,000 newborns, and its characteristic clinical features include developmental delay, mental retardation, hypotonia, congenital heart defects, seizure, and facial dysmorphism. However, detection of the terminal deletion in chromosome 1p by conventional G-banded karyotyping is difficult. Here we present a case of epilepsy with profound developmental delay and characteristic phenotypes. A 7-year-and 6-month-old boy experienced afebrile generalized seizure at the age of 5 years and 3 months. He had recurrent febrile seizures since 12 months of age and showed severe global developmental delay, remarkable hypotonia, short stature, and dysmorphic features such as microcephaly; small, low-set ears; dark, straight eyebrows; deep-set eyes; flat nasal bridge; midface hypoplasia; and a small, pointed chin. Previous diagnostic work-up, including conventional chromosomal analysis, revealed no definite causes. However, array-comparative genomic hybridization analysis revealed 1p36 deletion syndrome with a 9.15-Mb copy loss of the 1p36.33-1p36.22 region, and fluorescence in situ hybridization analysis (FISH) confirmed this diagnosis. This case highlights the need to consider detailed chromosomal study for patients with delayed development and epilepsy. Furthermore, 1p36 deletion syndrome should be considered for patients presenting seizure and moderate-to-severe developmental delay, particularly if the patient exhibits dysmorphic features, short stature, and hypotonia.