• Title/Summary/Keyword: Fluorescence flow cytometry

Search Result 105, Processing Time 0.027 seconds

Efficient Killing Effect of Osteosarcoma Cells by Cinobufacini and Cisplatin in Combination

  • Huang, Tao;Gong, Wei-Hua;Li, Xiu-Cheng;Zou, Chun-Ping;Jiang, Guang-Jian;Li, Xu-Hui;Qian, Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2847-2851
    • /
    • 2012
  • Purpose: To study the killing effects on osteosarcoma cells of cinobufacini and cisplatin in combination and the related mechanisms so as to explore the chemotherapeutic method with integrated traditional Chinese and Western medicines. Methods: Cinobufacini and cisplatin were applied to OS732 cells singly or jointly and survival rates were measured by MTT assay. Changes in cellular shape were observed with inverted phase contrast and fluorescence microscopy and apoptosis rates were analyzed with flow cytometry (FCM). Immunocytochemistry were used to examine the Fas expression of OS732 cells. Results: The combination of cinobufacini and cisplatin had the effect of up-regulating Fas expression and inducing apoptosis. The survival rate of combined application of 100 ${\mu}g/ml$ cinobufacini and 1 ${\mu}g/ml$ cisplatin on OS-732 cells was significantly lower than with either of the agents alone (p<0.01). Changes in cellular shape and apoptotic rates also indicated the apoptosis-inducing effects of combined application were much enhanced. Conclusion: The combination of cinobufacini and cisplatin demonstrated strong killing effects on OS-732 cells which might be related to up-regulation of Fas expression.

Apoptotic Effects of psiRNA-STAT3 on 4T1 Breast Cancer Cells in Vitro

  • Zhou, Yue;Tian, Lin;Zhang, Ying-Chao;Guo, Bao-Feng;Zhou, Qing-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6977-6982
    • /
    • 2014
  • Background: The aim of this study was to investigate the effect of a Lipofectamine2000 (Life2000) Transfection Reagent transfected psiRNA-STAT3 plasmid on 4T1 breast cancer cells. Materials and Methods: MTT was used to detect the cell proliferation of breast cancer 4T1 cells at different periods (0h, 6h, 8h, 10h); the cell cycle was assessed by flow cytometry; variation of apoptosis and mitochondrial membrane potential was observed under a fluorescence microscope; immunohistochemical staining was used to determine the expression of caspase-3 and cyclin-D1 protein. Results: An obvious effect of inhibition to 4T1 cancer cells could be observed at 8h after the psiRNA-STAT3 was transfected. Typical alterations of apoptotic morphological features were visible in the psiRNA-STAT3 treatment group. Mitochondrial membrane potential decreased significantly, the number of cells was increased in G0/G1 phase, and the number of cells was decreased in S phase, and the data were statistically significant (p<0.05), compared with the Scramble and Mock groups. Expression of caspase-3 protein was increased significantly, while that of cyclin D1 was significantly decreased. Conclusions: Life2000 transfected psiRNA-STAT3 plasmid can inhibit 4T1 tumor cell proliferation and promote apoptosis of 4T1 tumor cells, which process depends on the regulation of expression of cyclin D1 and caspase-3 protein.

The Study of Anti-cancer Mechanism with Bee Venom and Melittin on Human Prostatic Cancer Cell (전립선 암세포에 대한 봉약침액(蜂藥浸液) 및 Melittin 약침액(藥浸液)의 항암(抗癌) 기전(機轉) 연구(硏究))

  • Kim, Kyung-Tae;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.22 no.6
    • /
    • pp.37-50
    • /
    • 2005
  • Objectives : The purpose of this study was to investigate the anti-caner effect of Bee Venom and Melittin on the prostatic cancer cell(PC-3). The goal of study is to ascertain whether Bee Venom and Melittin inhibits the cell growth and cell cycle of PC-3, or the expression of relative genes and whether the regression of PC-3 cell growth is due to cell death or the expression of gene related to apoptosis. Methods : After the treatment of Pc-3 cells with Bee Venom and Melittin, we performed Fluorescence microscope, MTT assay, Western blotting, Flow cytometry, PAGE electrophoresis and Surface plasmon resonance analysis to identify the cell viability, apoptosis and gene related to apoptosis. Results : 1. Compared with Control cell, the inhibition of cell growth reduced in proportion with the dose of Bee Venom or Melittin($0{\sim}10{\mu}g/ml$) in PC-3. 2. In PC-3, Cell viabilities of Bee Venom or Melittin treatment was decreased significantly. 3. The nucli of Control cells were stained round and homogenous in DAPI staining, but those of PC-3 were stained condense and splitted. 4. In PC-3, apoptosis of Bee Venom or Melittin treatment was increased significantly. 5. Bax, Caspase-3 and P ARP of Bee Venom or Melittin treatment was increased significantly and Bcl-2 of Bee Venom or Melittin treatment was decreased significantly. Caspase-9 of Bee venom treatment was increased significantly. Conclusion : These results indicate that Bee Venom and Melittin inhibits the growth of prostate cancer cells, has anti-cancer effects by inducing apoptosis. We wish that the anti-cancer effects of Bee Venom and Melittin are used to clinical caner treatment.

  • PDF

The Effects of Cobrotoxin on $NF-{\kappa}B$ Activation in Human Prostatic Cancer Cell Line(PC-3) (Cobrotoxin이 전립선 암세포 $NF-{\kappa}B$ 활성에 미치는 영향)

  • Chae, Sang-Jin;Song, Ho-Seub
    • Journal of Acupuncture Research
    • /
    • v.22 no.5
    • /
    • pp.37-48
    • /
    • 2005
  • Objectives : The purpose of this study was to investigate the anti-caner effect of cobrotoxin on the prostatic cancer cell line(PC-3). Methods : After the treatment of PC-3 cells with cobrotoxin, we performed fluorescence microscope, MTT assay, Western blotting, Flow cytometry, PAGE electrophoresis and Surface plasmon resonance analysis to identify $NF-{\kappa}B$ the change of calcium and NO. Results : 1. The expression of $NF-{\kappa}B$ was decreased at 1nM and It·as decreased significantly at 2, 4, 8nM. 2. $I{\kappa}B,\;NF-{\kappa}B$ inhibitor, was decreased significantly at 8nM and $p-l{\kappa}Ba$, phosphrylation of $I{\kappa}B$, was decreased significantly at all concentrations of cobrotoxin. 3. The expressions of p50 and p65 were decreased significantly and dose-dependently at 1, 2, 4, 8nM. 4. The expression of p53 was increased significantly at 1, 2, 4, 8nM. 5. The calcium concentration in cell wasn't changed at 1, 2, 4, 8nM, but was increased dose-dependently at 30, 70, 130, 250nM comparing with lower dose of cobrotoxin. 6. The NO concentration in cell was increased significantly at 1, 2, 4, 8nM. 7. In immunochemical staining, we found that cobrotoxin-immunochemical complex move into intracellular space dose-dependently. Conclusion : These results indicate that cobrotoxin has anti-cancer effects by inducing apoptosis.

  • PDF

Silicon transporter genes of Fragilariopsis cylindrus (Bacillariophyceae) are differentially expressed during the progression of cell cycle synchronized by Si or light

  • Oh, Han Sang;Lee, Sung-eun;Han, Chae-seong;Kim, Joon;Nam, Onyou;Seo, Seungbeom;Chang, Kwang Suk;Jin, EonSeon;Hwang, Yong-sic
    • ALGAE
    • /
    • v.33 no.2
    • /
    • pp.191-203
    • /
    • 2018
  • Fragilariopsis cylindrus is one of the most successful psychrophiles in the Southern Ocean. To investigate the molecular mechanism of biomineralization in this species, we attempted to synchronize F. cylindrus growth, since new cell wall formation is tightly coupled to the cell division process. Nutrient limitation analysis showed that F. cylindrus cultures rapidly stopped growing when deprived of silicate or light, while growth continued to a certain extent in the absence of nitrate. Flow cytometry analysis indicated that deprivation of either silicate or light could effectively arrest the cell cycle of this diatom species at the G1 phase, suggesting that synchrony can be established using either factor. Fluorescence labeling of new cell walls was faintly detectable as early as approximately 6 h after silicon repletion or light irradiation, and labeling was markedly intensified by 18 h. It is revealed that the synthesis of girdle bands begins before valve synthesis in this species, with active valve synthesis occurring during the G2 / M phase. Expression profiling revealed that selective member(s) of the F. cylindrus SIT genes (FcSIT) respond to silicate and light, with a different set of genes being responsive to each factor. The Si / light double depletion experiments demonstrated that expression of one FcSIT gene is possibly correlated to transition to G2 / M phase of the cell cycle, when the valve is actively formed.

Effect of Tea Polyphenols on the Adhesion of Highly Metastatic Human Lung Carcinoma Cell Lines to Endothelial Cells in Vitro

  • Zheng, Feng-Jin;Shi, Lin;Yang, Jun;Deng, Xiao-Hui;Wu, Yu-Quan;Yan, Xi-Qing;Huang, Ning
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3751-3755
    • /
    • 2012
  • Aim: Tea polyphenols are known to play roles in critical steps of human lung carcinoma cell metastasis. For understanding the mechanisms whereby they inhibit tumor metastasis, the present study was conducted to investigate their effects on the adhesion of highly metastatic lung carcinoma cell lines (PG cells) to endothelial cells (EC cells) and adhesion molecule expression in vitro. Methods: The expression of CD44 or CD54 in the PG cells was detected by flow cytometry and adhesion of PG cells to EC cells was assessed by confocal microscopy double fluorescence staining. Results: The results showed that tea polyphenols: (1) inhibited the expression of CD44 and CD54, two important adhesion molecules in the PG cells in a dose-dependent manner; (2) significantly blocked the adhesion of PG cells to EC cells not only in a state of rest but also when active; and (3) influenced CD44 and CD54 expression during the adhesion process of PG cells to EC cells. Conclusions: The data indicated that the blocking role of tea polyphenols in the adhesion of PG cells to EC cells is related to CD44 and CD54. The mechanism of tea polyphenol prevention of human lung carcinoma metastasis might be through inhibiting adhesion molecule expression to block cancer cell adhesion.

Cell Death Induction Mechanism of Non-small Cell Lung Cancer Cell Line, NCI-H1703 by Docetaxel (Docetaxel에 의한 비소세포폐암세포주 NCI-H1703의 세포사멸 유도기전)

  • Ha Hyeon-Cheol;Song Seung-Hwan;Park Chin-Su;Kim Jong-Won;Kim Yeong-Dae
    • Journal of Chest Surgery
    • /
    • v.39 no.9 s.266
    • /
    • pp.668-673
    • /
    • 2006
  • Background: Docetaxel has been effectively used as an anti-cancer chemotherapuetic agent for various tumor treatments including lung cancer. However, the cell death induction mechanism(s) involved with docetaxel treatment in lung cancer cells has not been known yet. Material and Method: In the present study, the cellular and biochemical changes of NCI-H1703 cells (non-small cell lung cancer cell line, p53-mutant) after docetaxel treatment have been monitored by flow cytometry, fluorescence microscopy and western blot. Result: Docetaxel treatment significantly resulted in decrease of S phase as well as increase of G2 phase, and consequently evoked an increase of cell death in NCI-H1703 cells. After docetaxel exposure the activations of caspase-3 and caspase-9 were detected. Conclusion: Take together, it is suggested that the docetaxel induces NCI-H1703 cell death by caspase-9 and caspase-3 dependent mitochondrial apoptotic pathway.

Oxaliplatin Sensitizes OS Cells to TRAIL-induced Apoptosis Via Down-regulation of Mcl1

  • Huang, Tao;Gong, Wei-Hua;Li, Xiu-Cheng;Zou, Chun-Ping;Jiang, Guang-Jian;Li, Xu-Hui;Qian, Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3477-3481
    • /
    • 2012
  • Purpose: To investigate the killing effect on OS cells of a combination of oxaliplatin and TRAIL and related molecular mechanisms. Methods: TRAIL and oxaliplatin were applied to OS732 cells singly or jointly and survival inhibition rates were measured by MTT assay, changes of cellular shape being assessed with inverted phase contrast and fluorescence microscopy. Apoptotic rates were analyzed by flow cytometry (FCM) and immunocytochemistry was used to examine Mcl1 expression of OS732 cells. Results: The survival inhibition rate of combined application of $100{\mu}g/ml$ TRAIL and $1{\mu}g/ml$ oxaliplatin on OS-732 cells was significantly higher than that of either agent singly (p<0.01). Changes of cellular shape and apoptotic rates also indicated apoptosis-inducing effects of combined application to be much stronger than those of individual application. Oxaliplatin had the effect of down-regulating Mcl1 expression and sensitizing OS cells to TRAIL-induced apoptosis. Conclusion: A combination of TRAIL and oxaliplatin exerts strong killing effects on OS-732 cells which might be related to down-regulation of Mcl1 expression.

Blocking Bcl-2 Leads to Autophagy Activation and Cell Death of the HEPG2 Liver Cancer Cell Line

  • Du, Peng;Cao, Hua;Wu, Hao-Rong;Zhu, Bao-Song;Wang, Hao-Wei;Gu, Chun-Wei;Xing, Chun-Gen;Chen, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5849-5854
    • /
    • 2013
  • Background: Apoptosis may be induced after Bcl-2 expression is inhibited in proliferative cancer cells. This study focused on the effect of autophagy activation by ABT737 on anti-tumor effects of epirubicin. Methods: Cytotoxic effects of ABT737 on the HepG2 liver cancer cell line were assessed by MTT assay and cell apoptosis through flow cytometry. Mitochondrial membrane potential was measured by fluorescence microscopy. Monodansylcadaverin (MDC) staining was used to detect activation of autophagy. Expression of p53, p62, LC3, and Beclin1, apoptotic or autophagy related proteins, was detected by Western blotting. Results: ABT737 and epirubicin induced growth inhibition in HepG2 cells in a dose- and time-dependent manner. Both ABT737 and epirubicin alone could induce cell apoptosis with a reduction in mitochondrial membrane potential as well as increased apoptotic protein expression. Further increase of apoptosis was detected when HepG2 cells were co-treated with ABT373 and epirubicin. Furthermore, our results demonstrated that ABT373 or epirubicin ccould activate cell autophagy with elevated autophagosome formation, increased expression of autophagy related proteins and LC3 fluorescent puncta. Conclusions: ABT737 influences cancer cells through both apoptotic and autophagic mechanisms, and ABT737 may enhance the effects of epirubicin on HepG2 cells by activating autophagy and inducing apoptosis.

Radix Tetrastigma Hemsleyani Flavone Induces Apoptosis in Human Lung Carcinoma A549 Cells by Modulating the MAPK Pathway

  • Zhong, Liang-Rui;Chen, Xian;Wei, Ke-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5983-5987
    • /
    • 2013
  • Radix Tetrastigma Hemsleyani Flavone (RTHF) is widely used as a traditional herb for its detoxification and anti-inflammation activity. Recently, several studies have shown that RTHF can inhibit growth and induce apoptosis in human cancer cell lines. However, the mechanisms are not completely understood yet. In this study we investigated the potential effects of RTHF on growth and apoptosis in human lung adenocarcinoma A549 cells as well as its mechanisms. A549 cells were treated with RTHF at various concentrations for different times. In vitro the MTT assay showed that RTHF had obvious anti-proliferation effects on A549 cells in a dose- and time-dependent manner. Cell morphological changes observed by inverted microscope and Hoechst33258 methods were compared with apoptotic changes observed by fluorescence microscope. Cell apoptosis inspected by flow cytometry showed significant increase in the treatment group over the control group (P<0.01). Expression of apoptosis related Bax/Bcl-2, caspases and MAPK pathway proteins were detected by Western blotting. The results showed that RTHF up-regulated the Bax/Bcl-2 ratio and cle-caspase3/9, cle-PARP expression in a dose-dependent manner. Expression of p-p38 increased, p-ERK decreased significantly and that of p-JNK was little changed in the RTHF group when compared with the control group. These results suggest that RTHF might exert anti-growth and apoptosis activity against lung cancer A549 cells through activation of caspases and Bcl-2 family proteins and the MAPK pathway, therefore presenting as a promising therapeutic agent for the treatment of lung cancer.