• Title/Summary/Keyword: Fluoranthene

Search Result 111, Processing Time 0.023 seconds

A Study on Polynuclear Aromatic Hydrocarbons Emitted by Coking Time and Sampling Method in a Coke Oven Plant (코크스제조공정에서 탄화시간과 시료채취방법에 따른 다핵방향족탄화수소 발생에 관한 연구)

  • Yun, Chung Sik;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.1
    • /
    • pp.37-53
    • /
    • 1993
  • The polynuclear hydrocarbons (PAHs) emitted from coke oven standpipe were sampled using three sampling systems, including glass fiber filter+silver membrane filter, glass fiber filter+silver membrane filter+XAD-2 adsorbent tube, PTFE membrane filter+XAD-2 adsorbent tube, extracted by methylene chloride and analysed by gas chromathography using flame ionization detector. The results of this study were as follows. 1. Because the amounts of coke oven emissions(COE) were large, the analyses of PAHs were simple and possible without evaporation and concentration. Although the generation of COE was high during early stage of coking, the airborne concentration of PAHs was low and increased during late coking. 2. The contents of PAHs in COE were 1.35-2.81%. 3. The index components of PAHs were fluoranthene and pyrene. Their correlation coefficient to total PAHs were 0.96, 0.95, respectively. 4. The particulate PAHs were sampled by filter and gaseous PAHs by adsorbent tube. The collection efficiency of glass fiber filter+silver membrane filter was 20% of total amount sampled by filters+adsorbent and PTFE membrane filter 50%. Adsorbent tube must be attached to the filter to collect light and small PAH components. 5. The generation of acenaphthene and indeno (1,2,3-cd) pyrene were low and concentrations of fluorene and anthracene were $20-40ug/m^3$ throughout coking time. Other PAH eoncentrations were sometimes high. The generation of PAHs was low at 4-6 hours of coking time. The gaseous PAHs were generated earlier than particulate PAHs.

  • PDF

Characteristics of and Affecting Factors on the Concentrations of Polycyclic Aromatic Hydrocarbons Associated with PM10in the Urban Atmosphere (도시 대기 중 PM10에 함유된 다환방향족탄화수소의 농도분포특성과 주요 영향인자)

  • 최진수;백성옥
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.33-44
    • /
    • 2003
  • The atmospheric concentrations of particulate polycyclic aromatic hydrocarbons (PAHs) associated with PM$_{10}$ were determined in Taegu metropolitan area. Sampling was undertaken every five days throughout one year period from 1993 to 1994 at four sites, representing a residential, a commercial, an industrial, and a sub-urban area, respectively. Benzo (e) pyrene, benzo (k) fluoranthene, and chrysene were found to be the most abundant com-pounds during the study period. The concentrations of benzo (a) pyrene, one of carcinogenic PAHs, ranged 2.0~4.8 ng/㎥ in winter and 0.5~1.5 ng/㎥ in summer season, indicating a marked seasonal variation. It was found that there were very similar patterns in the relative profiles of PM$_{10}$-bound PAH concentrations among the four sampling sites, while the absolute levels of each PAH were significantly different from each site. In addition, the patterns of summer to winter concentration ratios for each PAH were almost identical between the different sites. Despite difficulties due to the lack of good markers for specific sources in the target compounds, we were able to evaluate and describe the effects of vehicle emissions and space heatings, using relative profiles of PAHs, winter to summer (W/S) ratios, PAH-to-PAH ratios, and the result of principal component analysis. As a con-sequence, it was concluded that the vehicle emissions in urban and sub -urban areas are likely to be a major contributor for PAH loadings in the ambient atmosphere during the non-heating season, while the contributions of residential heating and local industrial oil burning emissions were highly significant in heating season.son.

Evaluation of Environmental Mutagens-Complex Mixture in Diesel Exhaust Respirable Particulate Matter

  • Kim, Soung-Ho;Ryu, Byung-Tak;Jang, Hyoung-Seok;Kim, Yun-Hee;Lee, Do-Han;Han, Kyu-Tae;Oh, Seung-Min;Chung, Kyu-Hyuck
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.194-194
    • /
    • 2003
  • The International Agency for Research on Cancer (IARC, 1989) has classified whole diesel exhaust as probably carcinogenic to humans. Diesel exhaust particulate matter (DPM) adsorbs different chemical substances including PAHs and nitroarenes. DPM is emphasized because it is a major component of diesel exhaust, it is suspected of contributing to a health hazard. Diesel exhaust is a complex mixture of carbon particles and associated organics and inorganics, and it is not known what fraction or combination of fractions cause the health effects [cancer effects, noncancer effects (respiratory tract irritation/inflammation and changes in lung function)] that have been observed with exposure to diesel exhaust. In order to identify which chemical classes are responsible for the majority of the observed biological activities, we performed a particular biological/chemical analysis. Respirable particulate matter (PM2.5: <2.5mm) was collected from diesel engine exhaust using a high-volume sampler equipped with a cascade impactor. Particulate oganic matter was extracted by the dichloromethane/sonication method and the crude extract was fractionated according to EPA recommended procedure into seven fractions by acid-base partitioning and silica gel column chromatography. We examined genotoxic potentials of diesel exhaust particulate matter using novel genotoxicity tests, which are rapid, simple and sensitive methods for assessing DNA-damage at the DNA and chromosomal level (comet assay, in vitro MN test and Ames test). Higher genotoxic potency was observed in non polar fractions and several PAHs were detected by GC-MS, such as 1,2,5,6 dibenzanthracene, chrysene, 1,2-benzanthracene, phenanthrene and fluoranthene.

  • PDF

Evaluation of Sampling Methodology for the Measurement of Polycyclic Aromatic Hydrocarbons in the Atmosphere (대기 중 다환방향족 탄화수소의 측정을 위한 시료포집방법의 비교평가)

  • 백성옥;최진수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.43-62
    • /
    • 1998
  • This study was carried out to investigate the influence of different sampling methods on the measured concentrations of polycyclic aromatic hydrocarbons (PAH) both in the vapor and particulate phases, and to evaluate the effects of ambient temperature and sampling duration on the losses of PAH associated with particle samples due to volatilization. The experimental protocol of this study is consisted of two parts. The first part is related to the comparison of PAH concentrations measured by 4 different sampling systems, each of which involves different sampling principles for comparison purposes, including a medium-volume sampler with XAD-2 adsorbent, a high-volume sampler with polyurethane foam (PUF), two identical low-volume samplers: one with XAD-2 and the other with PUF, respectively. The second part of this study is to quantitatively estimate the losses of particulate PAH samples by volatilization during sampling, using two identical low-volume samplers: one was used for changing the filters every 3 hrs, 6 hrs, 12 hrs, and 24 hrs sampling, while the other was maintained for continuous 48 hours sampling without changing the filter. The concentrations of volatile PAH including 2-3 rings appeared to be significantly affected by the type of adsorbent. Measured levels of these lower-molecular weight PAH by XAD-2 adsorbent were much higher than those by PUF for both high-volume and low-volume sampling. PUF was found to give rise to unknown components that interfered with the PAH analysis, even after extensive clean-up. In addition, the retention efficiency of PUF for lower molecular weight PAH was subject to a large variation, being significantly influenced by sampling conditions such as ambient temperature. However, the effect of sampling methods with different adsorbents on the measured levels of semi-volatile compounds including 4 rings PAH such as fluoranthene, pyrene, BaA and chrysene, was not so much significant as more volatile PAH compounds. It was also clear from this study that volatilization losses of the semi-volatile PAH collected on the filters were inevitably occurred during prolonged sampling, and hence the results obtained from conventional sampling methods may not be expected to yield an accurate distribution of PAH between the vapor and particulate phases.

  • PDF

Source Profile of Road Dust for Statistical Apportionment Modeling in Seoul (통계 수용모델을 위한 서울시 도로변 화학성분 원인 프로파일)

  • Park, Da-Jeong;Han, Young-Ji;Lee, Ji-Yi;Lee, Kwang-Yul;Cho, In-Hwan;Park, Eun Ha;Yi, Seung-Muk;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • Sources related to road dust is one of the biggest sources, which is responsible for a large portion of emission. In particular, PM2.5 is a potential cause for respiratory diseases, thus it should be managed and a mitigation plan using results of statistical apportionment modeling such as chemical mass balance needs to be established. Recently, identifying sources of PM2.5 and analyzing the contribution of the road dust through a contribution assessment is required. Therefore, this study provides the chemical source profiles of PM2.5 using IC, GC/MS, OCEC, and XRF for both paved sidewalk and paved roadway collected at seven different sampling sites. As a result, for paved sidewalk, $NH{_4}^+$ (70%), $NO{_3}^-$ (12%), $PO{_4}^-$ (9%), and $SO{_4}^{2-}$ (9%) have been analyzed in PM2.5 mass. Major molecular marker such as Si has been indicated as $12.0{\pm}3.4%$ and $13.6{\pm}6.9%$ for paved sidewalk and roadway, respectively. PAHs such as Fluoranthene, Pyrene, Chrysene, and 1,3,5-Triphenylbenzene are suggested as molecular markers for road dust.

Temporal and Spatial Distribution of Particulate Carcinogens and Mutagens in Bangkok, Thailand

  • Pongpiachan, Siwatt;Choochuay, C.;Hattayanone, M.;Kositanont, C.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1879-1887
    • /
    • 2013
  • To investigate the level of genotoxicity over Bangkok atmosphere, $PM_{10}$ samples were collected at the Klongchan Housing Authority (KHA), Nonsree High School (NHS), Watsing High School (WHS), Electricity Generating Authority of Thailand (EGAT), Chokchai 4 Police Station (CPS), Dindaeng Housing Authority (DHA) and Badindecha High School (BHS). For all monitoring stations, each sample covered a period of 24 hours taken at a normal weekday every month from January-December 2006 forming a database of 84 individual air samples (i.e. $12{\times}7=84$). Atmospheric concentrations of low molecular weight PAHs (i.e. phenanthrene, anthracene, pyrene and fluoranthene) were measured in $PM_{10}$ at seven observatory sites operated by the pollution control department of Thailand (PCD). The mutagenicity of extracts of the samples was compared in Salmonella according to standard Ames test method. The dependence of the effects on sampling time and on sampling location was investigated with the aid of a calculation of mutagenic index (MI). This MI was used to estimate the increase in mutagenicity above background levels (i.e. negative control) at the seven monitoring sites in urban area of Bangkok due to anthropogenic emissions within that area. Applications of the AMES method showed that the average MI of $PM_{10}$ collected at all sampling sites were $1.37{\pm}0.10$ (TA98; +S9), $1.24{\pm}0.08$ (TA98; -S9), $1.45{\pm}0.10$ (TA100; +S9) and $1.30{\pm}0.09$ (TA100; -S9) with relatively less variations. Analytical results reconfirm that the particulate PAH concentrations measured at PCD air quality monitoring stations are moderately low in comparison with previous results observed in other countries. In addition, the concept of incremental lifetime particulate matter exposure (ILPE) was employed to investigate the potential risks of exposure to particulate PAHs in Bangkok atmosphere.

Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Sediments inside Songsanpo and Seogwipo Harbors of Jeju Island, Korea

  • Moon Sang-Hee;Lee Young-Don;Lee Min-Gyu;Kam Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.105-119
    • /
    • 2005
  • The surface sediments inside Songsanpo and Seogwipo Harbors, major harbors of Jeju Island, were collected three times (June, September and December, 2001) and analyzed for 16 polycyclic aromatic hydrocarbons (PAHs) recommended by US-EPA as priority pollutants to assess their distribution levels and their biological effects on the marine organisms, and to suggest their possible origins. The concentrations of total PAHs inside Songsanpo and Seogwipo Harbors ranged from 41 to 288 ng/g on a dry weight basis with a mean value of 121 ng/g and from 14 to 268 ng/g with a mean value of 119 ng/g, respectively, and the levels were low as compared with those in other areas of the world. The sedimentary PAHs may be correlated with organic carbon and mud content to some extent. Based on comparisons of individual and total concentrations with effects-based sediment quality guidelines, the potential for the biological effects on the marine organisms were expected to be very low. From the examinations of the four PAH origin indices, such as LMW /HMW (low molecular weight 2-3 ring PAHs over high molecular weight 4-6 ring PAHs), phenanthrene/anthracene ratio, fluoranthene/pyrene ratio, chrysene/benzo[a]anthracene ratio, it can be concluded that the sediment PAH contaminations were ascribed to both of pyrolytic and petrogenic origins.

Comet Assay to Detect the DNA Breakages in the Tissue of the Purple Clam ( Saxidomus purpuratus) and the Blood of the Olive Flounder (Paralichthys olivaceus) Exposed to 5 PAHs

  • Lee, Taek-Kyun;Kim, So-Jung;Park, Eun-Seok;Rora Oh;Yun, Hee-Young;Man Chang
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.159-159
    • /
    • 2003
  • Comet assay is a potential monitoring tool because DNA strand breakage may be produced by a wide range of agents. The comet assay, also called the single-cell gell electrophoresis (SCGE) assay, is rapid and sensitive method for the detection of DNA damage in cells. This study was performed for the identification of DNA damage in the cells from flounders and clams exposed to PAHs. As a control experiments, flounder and clam cells were exposed to $H_2O$$_2$. The cells exposed to $H_2O$$_2$ were displayed a typical nuclei movement DNA damage of cells were significantly increased when the isolated cells from the blood of flounders and the tissue of clams were in vitro exposed to the different concentrations (5, 10, 50, 100 ppb) of five kinds of PAHs (benzo[a]pyrene, pyrene, fluoranthene, anthrancene, and phenanthrene). For the in vivo test, flounders and clams were exposed to the different concentrations of BaP for 4 days. The results showed that DNA strand breakage was effected by the concentration of BaP and the duration of exposure. In high concentration of BaP, the mean tail lengths of nuclei was longer than it In low concentration, while the mean size of head DNA decreased. In this research, both in vitro and in vivo genotoxicity of PAHs could be biomonitored by the comet assay. Especially, clams and flounders seem to be useful as materials for monitoring genotoxic damage by comet assay.

  • PDF

Airborne Suspended Particulates Concentration and Cancer Risk Assessment of Polycyclic organic matter in Seoul (서울시 대기부유분진의 농도와 다환방향족 유기물질에 의한 발암 위해성)

  • Park, Seoung-Eun;Chung, Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.4
    • /
    • pp.247-256
    • /
    • 1992
  • Airborne suspended particulates were collected at Shinchon by a high volume cascade impactor from Sep. 1990 to Aug. 1991. Organic matter was extracted from particulates and fractionated by liquid-liquid extraction and thin layer chromatography. Substances in the PAHs and nitroarenes'subfraction of neutral fraction were determined by capillary gas chromatography. Based on unit risk estimates by multi-stage model of benzo[a]pyrene and the results of exposure estimates, cancer risk was assessed. The annual average concentration of total suspended particulates was 201.77g/$m^3$. The percentage of fine particulates was 57.40. The concentration of total suspended particulates showed seasonal variations and was high in winter and spring. The average concentration of extractable organic matter was 8.12g/$m^3$. In all, 21 PAHs were identified and quantified. The annual concentration of fluoranthene was 2.38ng/$m^3$, and that was the highest value of all PAHs. A carcinogenic compound, benzo[a]pyrene, was at a concentration of 1.84ng/$m^3$. All the 10 nitroarenes were also identified and quantified. The major nitroarene in the Shinchon area was 2,7-dinitrofluorene. The annual concentration of 1-nitropyrene was 1.56ng/$m^3$. Concentrations of PAHs and nitroarenes were high in winter and low in summer. The life time excess risk estimates of benzo[a]pyrene was calculated as 0.96 persons/a million population in this experiment. In the rank of relative potenties, carcinogenic effects of the other PAHs were calculated as 0.004-0.108 persons/a million population.

  • PDF

Effects of Polycyclic Aromatic Hydrocarbons (PAHs) on Early Development of Sea Urchin Anthocidaris crassispina (Polycyclic aromatic hydrocarbons (PAHs)가 보라성게 (Anthocidaris crassispina)의 초기발생에 미치는 영향)

  • Na Oh-Soo;Moon Sang-Hee;Lee Chi-Hoon;Park Chang-Beom;Kim Byung-Ho;Jin Young-Seok;Hur Sang-Woo;Kam Sang-Kyu;Lee Young-Don
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.57-65
    • /
    • 2005
  • Effects of five polycyclic aromatic hydrocarbon (PAHs) constituents (naphthalene, fluorine, fluoranthene, benzo(a)pyrene, pyrene) on fertilization and early development of sea urchin egg, sperm and fertilized egg were investigated. The eggs, sperm and fertilized eggs were exposed to several concentrations of PAHs (1, 10, 100, 1000 and 10000㎍/L). The rate of fertilization and hatching decreased when the eggs and sperm were exposed to aqueous solution of PAHs. Also, Exposure of fertilized eggs with each PAHs did decrease survival and hatching rate. Concentration-dependent toxic effects on the rate of fertilization, hatching, survival and abnormality in A. crassispina were observed following exposure to PAHs (1, 10, 100, 1000 and 10000㎍/L). These data show that PAHs exposure decreased in fertilization success of sea urchin egg and sperm and producted abnormal embryo. It is plausible to suggest that PAHs had the potential to significantly reduce coastal recruitment of sea urchin.