• 제목/요약/키워드: Fluoranthene

검색결과 111건 처리시간 0.029초

Indoor Exposure and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in Public Facilities, Korea

  • Kim, Ho-Hyun;Lim, Young-Wook;Jeon, Jun-Min;Kim, Tae-Hun;Lee, Geon-Woo;Lee, Woo-Seok;Lim, Jung-Yun;Shin, Dong-Chun;Yang, Ji-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권2호
    • /
    • pp.72-84
    • /
    • 2013
  • In the study, pollution levels of indoor polycyclic aromatic hydrocarbons (PAHs) in public facilities (vapor phase or particulate phase) were evaluated, and a health risk assessment (HRA) was carried out based on exposure scenarios. Public facilities in Korea covered by the law, including underground subway stations, funeral halls, child care facilities, internet cafes (PC-rooms), and exhibition facilities (6 locations for each type of facility, for a total of 48 locations), were investigated for indoor assessment. For the HRA, individual excess cancer risk (ECR) was estimated by applying main toxic equivalency factor (TEF) values suggested in previous studies. Among the eight public facilities, internet cafes showed the highest average $PM_{2.5}$ concentration at $110.0{\mu}g/m^3$ (range: $83.5-138.5{\mu}g/m^3$). When assuming a risk of facility exposure time based upon the results of the surveys for each public facility, the excess cancer risk using the benzo(a)pyrene indicator assessment method was estimated to be $10^{-7}-10^{-6}$ levels for each facility. Based on the risk associated with various TEF values, the excess cancer risk based upon the seven types cancer EPA (1993) and Malcolm & Dobson's (1994) assessment method was estimated to be $10^{-7}-10^{-5}$ for each facility. The excess cancer risk estimated from the TEF EPA (2010) assessment was the highest: $10^{-7}-10^{-4}$ for each facility. This is due to the 10-fold difference between the TEF of dibenzo(a,e)fluoranthene in 2010 and in 1994. The internet cafes where smoking was the clear pollutant showed the highest risk level of $10^{-4}$, which exceeded the World Health Organization's recommended risk of $1{\times}10^{-6}$. All facilities, with the exception of internet cafes, showed a $10^{-6}$ risk level. However, when the TEFs values of the US EPA (2010) were applied, the risk of most facilities in this study exceeded $1{\times}10^{-6}$.

차량 보수도장 보험사기 규명을 위한 수용성 페인트 성분분석 (Analysis of Waterborne Automotive Refinish Paint for Investigating Insurance Fraud)

  • 이준배;이천호;유승진;공보경;권오성;김명덕;김남이;팽기정
    • 공업화학
    • /
    • 제28권4호
    • /
    • pp.490-494
    • /
    • 2017
  • 최근 차량 증가와 더불어 이에 따른 사고 또한 증가하고 있는 추세로써 대부분의 사고차량에서 도색작업이 반드시 요구되고 있다. 통상적인 차량 도색시 다량의 유기용제가 사용되어 환경문제가 대두되고 있으며 이에 대처하기 위해 최근 수용성 도료가 국내에서도 개발되고 그 사용이 증가하고 있다. 그러나 수용성 도료의 경우 도장 작업비용이 고가이기에 정비공장에서 보험금 과다청구의 수단으로 악용하는 사례 또한 적지 않다. 본 연구에서는 수용성 도료를 사용하였는지 여부를 규명하기 위해 수용성 도료에 사용되는 비이온성 계면활성제 성분인 Surfynol 104 성분을 지표물질로 하여 퀴리포인트를 이용한 열분해-기체크로마토그래피/질량분석법(Py-GC/MS)으로 분석하였다. 분석결과 도색작업이 완료된 실제 차량 페인트에서 동위원소 치환된 fluoranthene-d10을 내부표준물질로 하여 표준물첨가법(standard addition method)으로 약 0.38%의 계면활성제 성분이 검출되었다.

서울시 도로변에서 입자상 다환방향족탄화수소의 농도 특성 (The Characteristics of Particulate PAHs Concentrations at a Roadside in Seoul)

  • 이지이;김용표;배귀남;박수미;진현철
    • 한국대기환경학회지
    • /
    • 제24권2호
    • /
    • pp.133-142
    • /
    • 2008
  • 이 연구에서는 2005년 5월부터 2006년 6월까지 5차례에 걸쳐 서울시 신촌동에 위치한 도로변에서 입자상 PAHs의 농도 분포 특성을 살펴보았다. 도로변에서 입자상 PAHs 농도 분포는 측정시기별로 다른 양상을 보였지만, 2005년 11월을 제외하고는 벤젠고리가 $5{\sim}6$개로 구성된 고분자량 성분들의 농도가 높았다. 입자상 PAHs의 도로변 고유한 특성을 살펴보기 위해 기존 대기와 터널에서 측정한 입자상 PAHs 농도들과 비교하였다. 터널 결과에 비해 상대적으로 도로변에서는 BbF, Ind, BghiP 등의 고분자량 성분들의 비율이 높았는데, 이것은 동력계 시험을 바탕으로 알려진 자동차의 PAHs 배출 특성과 유사하였다. 대기에서는 도로변에 비해 Phen, Pyr, Flt이 높았지만, 도로변에서는 이들 성분들이 고분자량 성분들과 비슷한 비율로 분포하였다. 서울과 고산 대기 중 입자상 PAHs에는 석탄 연소를 포함한 여러 배출원에서 배출된 PAH 성분들이 혼합되어 있는 반면, 도로변에서 측정한 이 연구결과는 자동차 배출에 의한 영향이 지배적이었기 때문인 것으로 여겨졌다. 도로변에서 입자상 PAHs의 주요 배출원을 추정하기 위하여 특정 성분들의 농도비를 분석한 바에 의하면, 일반적으로 도로변에서는 자동차 배출에 의한 영향이 지배적이었고, 자동차 중에서도 경유 자동차 배출의 영향이 컸던 것으로 판단되었다. 2005년 9월과 11월에는 석탄과 바이오매스 연소의 영향이 보였는데, 이는 도로변이 대기와 혼재되어 나타난 결과로 추정된다.

제주시 토양 중 다환방향족탄화수소류(PAHs)의 분포 특성 (Distribution Characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) in Soils in Jeju City of Jeju Island, Korea)

  • 진유경;이민규;감상규
    • 한국환경과학회지
    • /
    • 제15권5호
    • /
    • pp.405-415
    • /
    • 2006
  • Sixteen soil samples around six areas (residental area, traffic area, power plant area, incineration area and factory area) where the stationary and mobile sources of polycyclic aromatic hydrocarbons (PAHs) are estimated to be emitted in Jeju City, were collected during Feburuary to March, 2004, and analyzed for 16 PAHs recommended by US EPA as primary pollutants to investigate their distribution characteristics. The concentrations of total PAHs (t-PAHs) and total carcinogenic PAHs $(t-PAH_{CARC})$ in soils of Jeju City were in the range of $21.7\sim264.2ng/g$ on a dry weight basis with a mean value of 87.2 ng/g and $6.3\sim118.0ng/g$ with a mean value of 33.4 ng/g, respectively. The concentrations of t-PAHs were low in comparison with those in soils of other domestic and foreign countries. The mean concentrations of t-PAHs and $(t-PAH_{CARC})$ with area decreased in the following sequences: traffic area> incineration area > factory area > power generation area > harbor area enli residental area. The correlation between t-PAHs and $(t-PAH_{CARC})$ were very high $(\gamma^2=0.9701)$, indicating that $(t-PAH_{CARC})$ concentration increases in proportion with t-PAHs. Comparing the distribution ratio of ring PAHs with area among 16 PAHs, it decreased in the order of 4-ring > 5-ring > 6-ring > 3-ring > 2-ring in all the areas except for harbor area. whitens for harbor area it was similar among 3-, 4- and 5-ring with high value. Low and no correlations between t-PAHs and soil compositions (organic matter content and particle size distribution) were observed, which is considered to be caused by the complex factors, such as the loading and characteristics of PAHs and diverse soil environment change, etc. From the examination of the three PAH origin indices, such as LMW/HMW (low molecular weight $2\sim3$ ring PAHs over high molecular weight $4\sim6$ ring PAHs), phenanthrene/anthracene ratio and fluoranthene/pyrene ratio, it can be concluded that the soil PAH contaminations were ascribed to strong pyrogenic origin in ail areas except for harbor area and to both pyrogenic and petrogenic origins.

차량용 폐윤활유에 함유된 다환 방향족 탄화수소 (PAHs)의 분석 (Determination of polycyclic aromatic hydrocarbons (PAHs) in used lubricating car oils)

  • 유광식;정지영;정선이;우상범
    • 분석과학
    • /
    • 제16권5호
    • /
    • pp.339-348
    • /
    • 2003
  • 본 연구에서는 동시 형광분광법과 GC/FID법을 이용하여 폐윤활유 시료 중의 PAHs를 acetonitrile 용매로 추출하여 정량분석 하였다. 동시 형광분광법을 이용하여 7종의 PAHs, 즉 acenaphthene (Ace), anthracene (Anth), benzo(a)pyrene (BaP), chrysene (Chry), phenanthrene (Phen), fluoranthrene (Fl) 및 perlyrene (Per)을 분석하였다. 이들 성분의 검정선은 모두 0.4~166 ppb(상관계수; 0.9985~0.9999)의 범위에서 직선을 보였다. 다른 8종의 PAHs를 GC법으로 분석하기 위한 검량선은 10.0 ppm 표준용액을 사용하였고, split ratio를 10에서부터 100까지 변화시킬 때에 발생되는 peak 면적을 이용하여 작성하였다. 검출감도는 동시 형광분광법이 GC법보다 적어도 100배 이상 우수하였다. 폐윤활유 시료 중의 총 PAHs 함량은 LNG(버스)와 LPG(택시)의 폐윤활유에서 각각 5.5 ng/g과 10.5 ng/g의 수준으로 검출되었으며, 가솔린을 사용하는 일반승용차, 경유를 사용하는 승합차 및 트레일러의 폐윤활에서 각각 92.2 ng/g, 92.6 ng/g 및 130.3 ng/g 등이 측정되어 경유를 사용하는 대형트레일러에서 가장 많은 양이 발생됨을 알 수 있었다.

경기 및 강원지역 농업용수 중 PAHs의 모니터링 연구 (Polycyclic Aromatic Hydrocarbons in Agricultural Waterways in Gyeonggi and Gangwon Provinces, Korea)

  • 김이선;박병준;이성은
    • 환경생물
    • /
    • 제34권3호
    • /
    • pp.216-221
    • /
    • 2016
  • 다환방향족탄화수소류 (PAHs, Polycyclic aromatic hydrocarbons)는 열분해 또는 불완전연소 과정에서 발생하는 방향족 고리를 포함하고 있는 유기화합물질로서 생물 및 인간에 해를 입힐 수 있는 독성물질들로 알려져 있다. 이에 본 연구는 경기도 20곳 및 강원도 15곳에서 농업용수를 채취하여, 시료 중 PAHs 농도와 분포 특성을 규명하였다. 쉽고 간단하고 효과적인 케처스 추출법 및 d-SPE 정제법을 이용해 분석 시료를 준비한 후에 GC-MS/MS를 이용해 14종의 PAHs 분석하였다. 경기도 강원도 지역에서 채취한 모든 시료에서 Phenanthrene이 검출되었으며 경기도 지역의 phenanthrene 농도는 $0.82{\sim}2.56{\mu}g\;L^{-1}$였고 강원도 지역의 phenanthrene 농도는 $0.83{\sim}1.62{\mu}g\;L^{-1}$였다. 경기도 한 곳에서만 fluoranthene ($0.26{\mu}g\;L^{-1}$)이 검출되었다. 분석법의 효율과 신뢰성을 확신하기 위한 회수율 시험에서 60~110%의 회수율을 얻었다. 상대표준편차는 PAHs 14종 모두 20% 이하였다.

수도권 지역에서 환경대기 중 유해대기오염물질 (VOCs, Aldehydes, PAHs) 농도분포 특성 연구 (Study on the Distributions of VOCs, Aldehydes, PAHs Concentration in Seoul Metropolitan Area)

  • 한진석;이민도;임용재;이상욱;김영미;공부주;안준영;홍유덕
    • 한국대기환경학회지
    • /
    • 제22권5호
    • /
    • pp.574-589
    • /
    • 2006
  • Although concentrations of hazardous air pollutants(HAPs) are very low in the atmosphere, a growing attention has been paid on such compounds due to their high toxicity and bioaccumulation potentials into human body. In order to control and manage the amount of these materials in ambient air, it is necessary to construct monitoring system of them and to know the current concentration level of HAPs above all. In this work, a wide range of HAPs has been measured in metropolitan area to recognize the present state of HAPs in this area. The measured concentration of VOCs was higher in order of Jeonnongdong, Jeongdong, and Yangsuri. The regional difference of VOCs concentration was also highest in spring. Its total VOCs was ranged from $15.17{\sim}41.45$ ppb. Benzene $0.43{\sim}2.32$ ppb showed similar concentration level with the result of previous researches in Seoul. This value is a little higher than the average concentration 0.92 ppb for national ambient air quality standards in Japan. The concentration of aldehydes in this study was lower than those of other researches. Previous works in Seoul metropolitan area showed that the concentration of formaldehyde and acetaldehyde were higher than 5 ppb. The concentration of gaseous and particulate PAHs was high in order of winter, spring, and summer More than 90% of PAHs with low molecular weight such as 2-rings and 3-rings PAHs existed in gas phase. On the other hands, PAHs with high molecular weight more than 5-rings PAHs almost existed in particulate. In spring, the concentration of gaseous PAHs was 24.38 $ng/m^3$ in Jeongdong. Among the particulate PAHs, the concentrations of Naphthalene, Benzo(b)fluoranthene, and Benzo(g, h, i)perylene were higher than others. Especially, the concentration of Benzo(a)pyrene, a important carcinogenic pollutant, was highest in winter 0.5 $ng/m^3$ and ranged from 0.03 to 0.3 $ng/m^3$ in spring and summer, which is lower than the monitoring result in 90's. These components were mainly originated from the vehicle exhaust or heating equipment use.

중소도시, 대도시 및 산업지역에서 채취한 미세분진 ($PM_{2.5}$)과 입자상 다환방향족탄화수소의 계절적인 분포 특성 (Characteristics of Seasonal Distributions of Fine Particles ($PM_{2.5}$) and Particle-Associated Polycyclic Aromatic Hydrocarbons in Urban, Metropolitan and Industrial Complex Sites)

  • 김희갑;정경미;김태식
    • Environmental Analysis Health and Toxicology
    • /
    • 제21권1호
    • /
    • pp.45-56
    • /
    • 2006
  • This study was conducted to investigate seasonal distributions of fine particles ($PM_{2.5}$) and associated polycyclic aromatic hydrocarbons (PAHs) at three cities. $PM_{2.5}$ samples were collected on glass fiber filters at urban (Chuncheon), metropolitan (Seoul), and industrial complex sites (Ulsan) from September, 2002 to February, 2004 using the Andersen FH 95 Particulate Sampler. About five 24-hour samples were collected from each site per season. The filters were analyzed for mass and six selected PAHs concentrations. $PM_{2.5}$ concentrations were the highest either in winter or spring, which could be attributed to the increase of fossil fuel combustion in winter or the transport of yellow sand to the Korean peninsula from China in spring, respectively. Regional $PM_{2.5}$ concentrations were higher in the order of Seoul>Chuncheon>Ulsan without statistical difference among cities. The filters were extracted using dichloromethane in an ultrasonicator and analyzed for six PAHs (anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, and benzo[a]pyrene) with HPLC. Total PAHs concentrations were statistically different among seasons in each site, and the highest concentrations were observed in winter at each sampling site. For total samples collected, the median total PAHs concentrations in Chuncheon ($4.6ng/m^3$) and Seoul ($4.4ng/m^3$) were approximately two times higher than that in Ulsan ($2.1ng/m^3$). Chrysene was a component found in the highest proportion among total PAHs at each site. Carcinogenic risks calculated based on the BaP toxic equivalency factors (TEFs) over the whole sampling period were higher in the order of Chuncheon>Seoul>Ulsan. This study suggests that the atmosphere of Chuncheon is contaminated with particulate matter and PAHs at the levels equivalent to those of Seoul and that an appropriate measure needs to be taken to mitigate human health risks from inhalation exposure to airborne fine particles.

대기(大氣) 중 Benzopyrene 및 중금속(重金屬)의 농도(濃度)와 입경분포(粒徑分布) (Atmospheric Concentration and Size Distribution of Airborne Particulates, Benzopyrene and Heavy Metals)

  • 허문영;권창호;유기선;최성규;권창호;김경호;손동헌
    • 약학회지
    • /
    • 제34권1호
    • /
    • pp.1-10
    • /
    • 1990
  • Total suspended particulate (TSP) in the atmosphere was collected and size-fractionated by Andersen high volume air sampler for the past two years (Mar. 1987-Feb. 1989) in Seoul. The concentrations of several polycyclic aromatic hydrocarbons and heavy metals were determined to investigate the atmospheric concentrations, seasonal variations and its relationship with the size distribution of suspended particulate matter. The arithmetic mean concentration of total suspended particulate was $229.48\;{\mu}g/m^3$. The concentrations of heavy metals were $2971.94\;ng/m^3$ for Fe, $767.75\;ng/m^3$ for Zn, $765.80\;ng/m^3$ for Pb, $218.40\;ng/m^3$ for Cu, $129.91\;ng/m^3$ for Mn, respectively. And the concentration of PAHs were $3.23\;ng/m^3$ for benzo(a)pyrene, $2.71\;ng/m^3$ for benzo(k)fluoranthene, $4.53\;ng/m^3$ for benzo(ghi)perylene, respectively. The mass-size distribution of TSP was lowest in the particle size range $1.1-3.3\;{\mu}m$ increased as the particle size increased or decreased. But PAHs, Pb and Zn abounded in particles below $2.0\;{\mu}m$, while Fe and Mn abouned in particles above $2.0\;{\mu}m$. TSP and its chemical compositions showed the seasonal variations. The concentrations of anthrophogenic origin like TSP, PAH and heavy metals in the fine particles were highest in winter and lowest in summer. PAH and Ph analyzed showed significant correlations with each other and with TSP concentration in fine particles, indicating that the particles in which they are contained have a similar behavior in the atmosphere.

  • PDF

한국형 소프트웨어를 이용한 유류.중금속 복합오염지역의 인체위해성평가 및 RBCA Tool Kit과의 비교분석 (Human Risk Assessment of a Contaminated Site Using Korean Risk-Based Corrective Action (K-RBCA) Software)

  • 남택우;류혜림;김영진;고석오;백기태;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권1호
    • /
    • pp.32-41
    • /
    • 2011
  • By using a newly developed Korean risk-based corrective action (K-RBCA) software (K-RBCA) and the RBCA Tool Kit, risk assessment was performed on a site that was contaminated with aromatic hydrocarbons and heavy metals. Eight chemicals including benzene, ethylbenzene, xylenes, naphthalene, benz(a) anthracene, benzo(b) fluoranthene, benzo(a) pyrene, and arsenic that exceeded the US EPA Soil Screening Level were chosen as the target pollutants. A conceptual site model was constructed based on the site-specific effective exposure pathways. According to the RBCA Tool Kit the carcinogenic risk of arsenic was larger than $10^{-6}$, which is the generally acceptable carcinogenic risk level. The K-RBCA estimated the same level of carcinogenic risk for arsenic. With the RBCA Tool Kit, the carcinogenic risk of benzo(a) pyrene was estimated to be about $1.3{\times}10^{-6}$. However, with the K-RBCA benzo(a) pyrene did not exhibit any risk. The inconsistency between the softwares was attributed to the different fundamental settings (i.e., medium division) between the two softwares. While the K-RBCA divides medium into surface soil, subsurface soil, and groundwater, the RBCA Tool Kit divides medium into only soil and groundwater. These differences lead to the different exposure pathways used by the two softwares. The K-RBCA considers the exposure pathways in surface soil and subsurface soil separately to estimate risk, however, the RBCA Tool Kit considers the surface soil and subsurface soil as one and uses the integrated exposure pathways to estimate risk. Thus the resulting risk is higher when the RBCA Tool Kit is used than when the K-RBCA is used. The results from this study show that there is no significant difference in the risks estimated by the two softwares, thus, it is reasonable to use the K-RBCA we developed in risk assessment of soil and groundwater. In addition, the present study demonstrates that the assessor should be familiar with the characteristics of a contaminated site and the assumptions used by a risk assessment software when carrying out risk assessment.