• Title/Summary/Keyword: Fluids interference

Search Result 25, Processing Time 0.019 seconds

Helium-Air Exchange Flow Through Openings with Vertical Partitions (수직평판을 삽입한 개구부의 헬륨 및 공기 치환류)

  • 강태일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.79-87
    • /
    • 2000
  • This paper describes experimental investigations of helium-air exchange flow through openings with vertical partitions. Such exchange flows may occur following rupture accident of stand pipe in high temperature gas cooled reactor. Exchange flow rates are investigated experimentally by using partitioned opening and opening with extended partition to assess fluids interference of the exchange flow at the stand pipe rupture accident. A tests vessel with the two types of opening on top of test cylinder is used in the experiments. An estimation method of mass increment is developed and applied to measure the exchange flow rate. A technique of flow visualization by Mach-Zehnder interferometer is provided to recognize the exchange flows. Amplitude and progress of interference fringes of the flows are observed and used as a support in comparison with the exchange flow rates. Flow passages of upward flow of the helium and downward flow of the air for both two types of the opening are separated by inserted partition within the opening, but in the case of partitioned opening, unseparated flow is formed at the opening entrance and the two flows interface. The exchange flow rate for the partitioned opening is not greater than that of the opening with extended partition because of the fluids interference at the entrance of opening. Finally, the fluids interference at the opening entrance is found to be one of important factors on the helium-air exchange flow rate.

  • PDF

Numerical Investigation for the Optimization of Two-Dimensional Adaptive Wall (2차원 적응벽면의 최적화에 관한 수치적 연구)

  • Chang B. H.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.134-141
    • /
    • 1996
  • Wall interference is one of the major obstacles to increase the model size and data accuracy. There have been many treatments for wall interference including interference correction and adaptive wall test section. Recently, two-flexible-walled adaptive wall test section is concluded adequate for three-dimensional test. But proper location of target line and pressure holes are critical to its success. In this study, a new adaptive algorithm which dispenses target line and dependency of pressure hole distribution is suggested. The wind tunnel and free air tests are simulated by the numerical computation of Euler equations. The optimum wall shape is achieved by two variable optimization which is composed of two base streamlines. The wall interference is reduced well in the optimized result which is not sensitive to the base streamlines.

  • PDF

UNSTEADY WALL INTERFERENCE EFFECT ON FLOWS AROUND AN OSCILLATING AIRFOIL IN CLOSED TEST-SECTION WIND TUNNELS (폐쇄형 풍동 시험부내의 진동하는 익형 주위 유동에 대한 비정상 벽면효과 연구)

  • Kang Seung-Hee;Kwon Oh Joon;Hong Seung-Kyu
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.60-68
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a forced oscillating airfoil in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The Spalart-Allmaras one-equation model is employed for the turbulence effect. The computed results of the oscillating airfoil having a thin wake showed that the lift curve slope is increased and the magnitude of hysteresis loop is reduced by the interference effects. Since the vortex around the airfoil is generated and convected downstream faster than the free-air condition, the phase of lift, drag and pitching moment coefficients was shifted. The pressure on the test section wall shows harmonic terms having the oscillating frequency contained in the wail effect.

A STUDY ABOUT FISH LOCOMOTION USING COMPUTATIONAL FLUID DYNAMICS (전산유체역학 기법을 이용한 물고기 유영에 관한 연구)

  • Kim, S.H.;Jung, Y.S.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.99-107
    • /
    • 2014
  • The aim of the present study is to investigate the flow interference between two adjacent undulating fish-like body, and its effect on the undulating propulsion. For this purpose, unsteady two dimensional incompressible flow calculations were conducted using an unstructured mesh flow solver, coupled with an overset mesh technique. To deal with mesh deformation due to fish locomotion, spring analogy is utilized. The fish body used in the simulation is constructed from the NACA0012 airfoil. The study indicates that the propulsion of undulating fish is proportional to frequency and wavelength of the midline oscillation when there is no adjacent fish. It also reveals that average thrust was increased when the vortex shedding from the tail was conserved well and pressure difference between upper and lower sides of the fish was magnified due to flow interference. From this study, which relative position and phase difference of locomotion between two fishes can generate maximum thrust was known among six different cases.

NUMERICAL SIMULATION OF THE INTERFERENCE EFFECT OF EXTERNAL STORES AND TAIL WING SURFACES OF A GENERIC FIGHTER AIRCRAFT (전투기 형상의 외부 장착물과 꼬리 날개 공력 간섭에 대한 수치적 연구)

  • Kim, M.J.;Kwon, O.J.;Kim, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.149-156
    • /
    • 2007
  • A three-dimensional inviscid flow solver has been developed based on unstructured meshes for the simulation of steady and unsteady flowfields around a generic fighter aircraft and for the investigation of the aerodynamic interference between the external stores and the tail surfaces. The flow solver is based on a vertex-centered finite-volume method and an implicit point Gauss-Seidel relaxation scheme. To validate the flow solver, calculations were made for a steady flow and the computed results were compared with experimental data. An unsteady time-accurate computation of the generic fighter aircraft with external stores at transonic flight conditions showed that the external stores cause undesirable vibration on the horizontal tail surface due to the mutual interference between their wake and the horizontal tail surface. It was shown that downward deflection of the trailing edge flap significantly reduces the undesirable interference effect.

  • PDF

Analysis of a Lip Seal Behavior for Rotary Union (로터리 유니온용 립 시일의 거동 해석)

  • Park, Tae-Jo;Yoo, Jae-Chan
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.272-277
    • /
    • 2007
  • Various type of rotary unions are widely used to provide fluids between rotating parts. To prevent fluid leakage, most of the rotary unions adopt mechanical seals which is highly reliable but too expensive and complicate. In this paper, a simple lip seal system made of PTFE is adopted in designing of a compact rotary union. Using MARC, the behavior characteristics of lip seal are investigated for seal mounting process, and obtained variations of contact pressure distribution and contact width with interferences and fluid pressures. The results showed that contact width are increased with interference and pressure. The maximum contact pressure are also increased up to a certain interference and pressure, however, then decreased. The numerical methods and results can be applied in designing and performance improvement of lip seal adopted rotary union, and further extensive studies are required.

NUMERICAL INVESTIGATION OF SHOCK-BUFFET ON TRANSPORT AIRCRAFT WITH CHANGING THE POSITION OF NACELLE/PYLON (항공기 Nacelle/pylon 위치에 따른 Shock-Buffet 현상의 수치적 연구)

  • Kim, S.H.;Yee, K.J.;Oh, S.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.69-76
    • /
    • 2014
  • The shock buffet on a transonic transport aircraft are negative factors that reduce the aerodynamic performance of aircraft. The parametric studies were performed for position of nacelle/pylon to estimate the trend of flow mechanism under the wing that affects shock buffet. To generate external mesh of aircraft configuration that change the position of nacelle, snappyHexMesh provided in OpenFOAM was applied. Implicit density-based solver(ISAAC) was used for flow analysis. The change of nacelle position along horizontal direction dynamically affected the aerodynamic performance of transonic transport aircraft as comparing that of vertical direction. As a result of the parametric study of nacelle/pylon position, it was confirmed that the optimal position of nacelle can be obtained by aerodynamic design.

Wind-induced response of structurally coupled twin tall buildings

  • Lim, Juntack;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.383-398
    • /
    • 2007
  • The paper describes a study of the effects of structural coupling on the wind-induced response of twin tall buildings connected by a skybridge. Development of a dual high-frequency force balance used in wind tunnel investigation and background information on the methodology employed in analysis are presented. Comparisons of the wind-induced building response (rooftop acceleration) of structurally coupled and uncoupled twin buildings are provided and the influence of structural coupling is assessed. It is found that the adverse aerodynamic interference effects caused by close proximity of the buildings can be significantly reduced by the coupling. Neglecting of such interactions may lead to excessively conservative estimates of the wind-induced response of the buildings. The presented findings suggest that structural coupling should be included in wind-resistant design of twin tall buildings.

NUMERICAL INVESTIGATION OF AERODYNAMIC INTERACTION OF AIR-LAUNCHED ROCKETS FROM A HELICOPTER (헬리콥터로부터 발사된 로켓의 공력 간섭 현상에 대한 수치적 연구)

  • Lee, B.S.;Kim, E.J.;Kang, K.T.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • Numerical simulation of air-launched rockets from a helicopter was conducted to investigate the aerodynamic interference between air-launched rocket and helicopter. For this purpose, a three-dimensional inviscid flow solver has been developed based on unstructured meshes. An overset mesh technique was used to describe the relative motion between rocket and rocket launcher. The flow solver was coupled with six degree-of-freedom equation to predict the trajectory of free-flight rockets. For the validation, calculations were made for the impinging jet with inclined plate. The rotor downwash of helicopter was calculated and applied to simulation of air-launched rocket. It is shown that the rotor downwash has non-negligible effect on the air-launched rocket and its plume development.

Numerical Investigation of the Unsteady Adaptive Wall Models in the Unsteady Wind Tunnel Testing (비정상유동 실험시의 비정상 적응벽면 모델의 수치적 연구)

  • Chang Byeong-Hee;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.219-224
    • /
    • 1995
  • The adaptive wall test section has distinct advantage over the other devices for reduction of wall interference in the wind tunnel testing. For two-dimensional steady flows the wall adaption strategy has been well established and, in some extent, has been effectively applied to three-dimensional steady flows. For unsteady testing, the wall adaptation is conceptually possible but has never been realized in the wind tunnel experiment. In this study, relatively simple adaptive wall models have been proposed and evaluated through numerical tests. The effect of Mach number, frequency, and amplitude of pitching oscillation on the wall interference reduction has been also studied.

  • PDF