• 제목/요약/키워드: Fluidized-bed reactor

검색결과 248건 처리시간 0.03초

유동층 반응기에서 카본블랙 촉매를 이용한 프로판의 촉매 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed)

  • 남우석;정재욱;윤기준;이동현;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.388-391
    • /
    • 2006
  • A fluidized bed reactor made of quartz with 0.055m I.D. and 1.0m in height was employed for the thermocatalytic decomposition of propane to produce $CO_2-free$ hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor The propane decomposition rate used carbon black DCC-N330, Hi-900L as a catalyst. The propane decomposition reaction was carried out at the temperature range of $600-800^{\circ}C$, propane gas velocity of $1.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature on the reaction rates was investigated. Resulting production in our experiment were not only hydrogen but also several by products such as methane, ethylene, ethane, and propylene.

  • PDF

카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed)

  • 이승철;윤용희;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.97-100
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2$ - free hydrogen . The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by TEM image.

  • PDF

유동층반응기에서 촉매를 이용한 메탄 열분해 (Thermal Decompostion of Methane Using Catalyst in a Fluidized Bed Reactor)

  • 장현태;이지윤;차왕석
    • 한국산학기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.487-492
    • /
    • 2008
  • 본 논문은 유동층반응기에서 메탄 열분해에 의한 수소 생산과 탄소 생성에 대한 연구를 수행하였다. 환경에 대한 영향을 최소화한 상태에서 one-step에 의한 메탄의 전환반응을 메탄 분해촉매활성에 영향을 미치는 인자에 대하여 연구하였다. 측정된 압력요동특성치의 해석을 통하여 유동층 열분해촉매의 유동화현상을 측정하였으며, 유동화특성에 따른 메탄열분해능을 측정하였다. 메탄의 분해능는 생성되는 수소의 농도로부터 측정하였다. 유동층의 특성인 층내 입자 이동성, U-Umf, 마모, 비산유출, 유동화가스의 효율밀도에 따른 분해효율에 미치는 영향을 고찰하였다.

유동층 반응기에서 카본블랙 촉매를 이용한 프로판의 촉매 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed)

  • 정재욱;남우석;윤기준;이동현;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.85-88
    • /
    • 2006
  • A fluidized bed reactor made of quartz with 0.055m I.D. and 1.0m in height was employed for the thermocatalytic decomposition of propane to produce $CO_2$-free hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The propane decomposition rate used carbon black N33O as a catalyst. The propane decomposition reaction was carried out at the temperature range of $600{\sim}800^{\circ}C$, paropane gas velocity of $1.0 U_{mf}\;3.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The carbon which was by-product of methane decomposition reaction was deposited on the catalyst surface that was observed by SEM. Resulting production in our experiment were not only hydrogen but also several by products such as methane, ethylene, ethane, and propylene.

  • PDF

가압 유동층 반응기에서 SEWGS 공정을 위한 WGS 촉매의 반응특성 (Reaction Characteristics of WGS Catalyst for SEWGS Process in a Pressurized Fluidized Bed Reactor)

  • 김하나;이동호;이승용;황택성;류호정
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.337-345
    • /
    • 2012
  • To check effects of operating variables on reaction characteristics of WGS catalyst for SEWGS process, water gas shift reaction tests were carried out in a pressurized fluidized bed reactor using commercial WGS catalyst and sand(as a substitute for $CO_2$ absorbent) as bed materials. Simulated syngas(mixed with $N_2$) was used as a reactant gas. Operating temperature was $210^{\circ}C$ and operating pressure was 20 bar. WGS catalyst content, steam/CO ratio, gas velocity, and syngas concentration were considered as experimental variables. CO conversion increased as the catalyst content and steam/CO ratio increased. CO conversion at fluidized bed condition was higher than that of fixed bed condition. However, CO conversion were maintained almost same value within the fluidized bed condition. CO conversion decreased as the syngas concentration increased. The optimum operation condition was confirmed and long time water gas shift reaction test up to 24 hours at the optimum operating conditions was carried out.

유동층반응기에서 폐제지슬러지와 석회석의 탈황 동역학 (Desulfurization kinetics of waste paper-sludge and limestone in a fluidized bed reactor)

  • 조상원;오광중
    • 한국환경과학회지
    • /
    • 제11권10호
    • /
    • pp.1089-1096
    • /
    • 2002
  • The objectives of this study were to investigate the desulfurization kinetics of paper sludge and limestone in a fluidized bed reactor according to bed temperature and air velocity. The experimental results were presented as follows ; First, the bed temperature had a great influence on the desulfurization efficiency of limestone and paper sludge. In paper sludge, the optimum condition in desulfurization temperature was at 80$0^{\circ}C$ and in limestone, that was at 850 $^{\circ}C$ or 900 $^{\circ}C$ Second, as air velocity increased, the desulfurization efficiency(or the absorbed amount of sulfur dioxide) by limestone and paper sludge decreased. And the absorbed amount of sulfur dioxide by paper sludge was larger than that of by limestone. Third, as the velocity increased and the optimum desulfurization temperature became, ks and the removal efficiency increased. So, ks, kd highly depended on the air velocity and bed temperature.

고체 연료의 유동층 연소 - 시험 연소로 특성 및 실험 인자 설정 (Solid fuel combustion in a fluidized bed - Characteristics of a lab-scale combustor and experimental parameters)

  • 최진환;박영호;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.236-245
    • /
    • 2000
  • A laboratory scale fluidized bed reactor was developed to treat the combustion characteristics of some fuels (wood, paper sludge, refuse derived fuel). The aims were to introduce the means of experiment and interpretation of the results and finally determine the particle characteristics on the pyrolysis and combustion process of the fuel. A single particle combustion process in the fluidized bed was closely observed. Understanding experimental facility characteristics and determining parameters were also carried out. The fuel combustion processes were observed by carbon conversion rate, recovery and mean carbon conversion time. They were estimated with the CO, $CO_2$ gas concentration monitored at the exit of the combustor. Fuel drying and pyrolysis process were governed by temperature distribution in the fuel particle. There was a significant overlap of the drying and devolatilization. However, transition process from devolatilization to char combustion seemed to be determined by mechanical solidity of the fuel particle after devolatilization process.

  • PDF

역 유동층 생물막 반응기에서의 생물막 탈착에 관한 연구 (A Study on Biofilm Detachment in an IFBBR)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제3권3호
    • /
    • pp.263-271
    • /
    • 1994
  • A detachment of biofilm was investigated in an inverse fluidized bed biofilm reactor(IFRBR). The biofilm thickness, 5 and the bioparticle density, Pm were decreased by the increase of Reynolds number, Re and the decrease of biomass concentration, h. The correlations were expressed as $\delta$=6l.6+16.33$b_c$-0.004Re and Ppd=0.3+0.027$b_c$- 2.93x$l0^{-5}$ no by multiple linear regression analysis method. Specific substrate removal rate, q was derived by F/M ratio and biofilm thickness as q=0.44.+0.82F/M-5.Ix10$-4^{$\delta$}$. Specific biofilm detachment rate, bds was influenced by FIM ratio and Reynolds number as $b_{ds}$=-0.26+0.26F/M+ 2.17$\times$$10^{-4}$Re. Specific biofilm deachment rate in an IFBBR was higher than that in a FBRR(fluidized bed biofilm reactor) because of the friction between air bubble and the bioparticles.

  • PDF

역 유동층 생물막 반응기에서 액체순환속도가 생물막에 미치는 영향 (Effect of the Liquid Circulation Velocity on the Biofilm Development in an IFBBR)

  • 김동석;윤준영
    • 한국환경과학회지
    • /
    • 제3권1호
    • /
    • pp.49-56
    • /
    • 1994
  • Effect of the liquid circulation velocity on the biofilm development was investigated in an inverse fluidized bed biofilm reactor(IFBBR). To observe the effect of the influent COD concentration on biofilm simultaneously, the influent COD value was adjusted to 1000mg/1 f for 1st reactor, and 2500mg/l for 2nd reactor. The liquid circulation velocity was adjusted by controlling the initial liquid height. As the liquid circulation velocity was decreased, the settling amount of biomass was increased and the amount of effluent biomass was decreased. Since the friction of liquid was decreased by the decrease of liquid circulation velocity, the biofilm thickness was increased and the biofilm dry density was decreased. In the 1st reactor the SCOD removal efficiency was constant regardless of the variation of the liquid circulation velocity, but it was increased by the decrease of the liquid circulation velocity because of more biomass population in 2nd reactor.

  • PDF

Catalytic Fast Pyrolysis of Tulip Tree (Liriodendron) for Upgrading Bio-oil in a Bubbling Fluidized Bed Reactor

  • Ly, Hoang Vu;Kim, Jinsoo;Kim, Seung-Soo;Woo, Hee Chul;Choi, Suk Soon
    • 청정기술
    • /
    • 제26권1호
    • /
    • pp.79-87
    • /
    • 2020
  • The bio-oil produced from the fast pyrolysis of lignocellulosic biomass contains a high amount of oxygenates, causing variation in the properties of bio-oil, such as instability, high acidity, and low heating value, reducing the quality of the bio-oil. Consequently, an upgrading process should be recommended ensuring that these bio-oils are widely used as fuel sources. Catalytic fast pyrolysis has attracted a great deal of attention as a promising method for producing upgraded bio-oil from biomass feedstock. In this study, the fast pyrolysis of tulip tree was performed in a bubbling fluidized-bed reactor under different reaction temperatures, with and without catalysts, to investigate the effects of pyrolysis temperature and catalysts on product yield and bio-oil quality. The system used silica sand, ferric oxides (Fe2O3 and Fe3O4), and H-ZSM-5 as the fluidized-bed material and nitrogen as the fluidizing medium. The liquid yield reached the highest value of 49.96 wt% at 450 ℃, using Fe2O3 catalyst, compared to 48.45 wt% for H-ZSM-5, 47.57 wt% for Fe3O4 and 49.03 wt% with sand. Catalysts rejected oxygen mostly as water and produced a lower amount of CO and CO2, but a higher amount of H2 and hydrocarbon gases. The catalytic fast pyrolysis showed a high ratio of H2/CO than sand as a bed material.