• Title/Summary/Keyword: Fluidized-bed

Search Result 768, Processing Time 0.021 seconds

Effect of Methionine on Cephalosporin C Production in a Fluidized- bed Bioreactor (유동층 생물반응기에서 세파로스포린 C 생산에 대한 메치오닌의 영향)

  • Kim, Eui-Yong;Yoo, Young-Je;Park, Young-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.611-618
    • /
    • 1989
  • Effects of methionine on cephalosporin C(CPC) production in a fluidized-bed bioreactor were investigated using bioparticles of Cephalosporium acremonium. Since methionine was found to be an important metabolic regulator on the synthesis of cephalosporin C, the effects of its concentration in the cuture broth and feeding mode to the bioreactor were studied. It was observed that the presence of initial methionine was essential for higher cephalosporin C production and there existed an optimal content of methionine. Carbon consumption rate also increased significantly under the presence of methionine. Production of cephalosporin C was most active when methionine was exhausted in the broth; however its additional feeding did not enhance the antibiotic production in the fluidized-bed bioreactor as much as expected. It was therfore considered important to feed an optimal content of methionine at the early operating stage for a higher cephalosporin C production in a fluidized-bed bioreactor. An interesting thing to note was that titre of the antibiotic with reused bioparticles was about 2 times higher in the methionine containing medium than that without methionine. Therefore repeated use of bioparticles, with an optimal content of methionine, was believed to be very useful to enhance to process productivity.

  • PDF

Simulation of Remote Field Scanner for Defect Evaluation of Water Wall Tube Within the Fluidized Bed Boiler (유동층보일러 수냉벽튜브 결함평가를 위한 원격자장 스캐너 시뮬레이션에 관한 연구)

  • Gil, Doo-Song;Jung, Gye-Jo;Seo, Jung-Seok;Kim, Hak-Joon;Kwon, Chan-Wool
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.145-150
    • /
    • 2020
  • Water wall tube is one of the major factors consisting of a fluidized bed boiler and it plays very important role for the generation of electricity within the boiler. But these water wall tubes within the fluidized bed boiler are subject to the ware and corrosion caused by the high temperature gas and the flowing medium. If water leak is occurred, the secondary damage by the water leak will occur. As a result of that, the power generation efficiency decreases noticeably. Therefore, the maintenance of the water wall tube is very important. In this study, we designed a exciter sensor based on simulation and composed a remote field eddy current system for the defect evaluation of the outer water wall tube. Starting from the shape design of exciter, we conducted simulations for various design factors such as the water wall tube size, material, frequency, lift-off and so on. Based on the results, we designed the optimum exciter sensor for the water wall tube test within the fluidized bed boiler.

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

The Attrition and Calcination Characteristics of Domestic Limestones for In-Situ Desulfurization in Circulating Fluidized Bed Boilers (순환유동층 로내 탈황을 위한 국내 석회석의 마모 및 소성 특성)

  • Kim, Ye Bin;Kang, Seo Yeong;Seo, Su Been;Keel, Sang In;Yun, Jin Han;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.687-694
    • /
    • 2019
  • In order to investigate the behavior of limestones which have been usually used for in-situ desulfurization reaction in circulating fluidized bed combustors, the attrition characteristics and calcination reactions of domestic limestones were analyzed in this study by using a thermogravimetric analyzer and an ASTM D5757-95 attrition tester. The average size distribution of limestones in circulating fluidized bed boilers have to be changed due to the attrition of particle-particle and particle-reactor wall and the calcination reaction. Domestic limestones might be used in commercial circulating fluidized bed boilers, but the attrition behaviors and particle size changes of limestones were varied. In calcination experiments at $850^{\circ}C$, the calcination reaction were varied with limestone samples. The calcination reaction time increased with an increase of particle size. Also, fine particles generated the attrition test of calcined limestone was 20% higher than those generated the attrition test of original limestone.

Recent Progress in the Catalytic Decomposition of Methane in a Fluidized Bed for Hydrogen and Carbon Material Production (수소 및 탄소소재 생산을 위한 메탄 유동층 촉매분해 기술의 최근 동향)

  • Keon Bae;Kang Seok Go;Woohyun Kim;Doyeon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.175-188
    • /
    • 2023
  • Global interest in hydrogen energy is increasing as an eco-friendly future energy that can replace fossil fuels. Accordingly, a next-generation hydrogen production technology using microorganisms, nuclear power, etc. is being developed, while a lot of time and effort are still required to overcome the cost of hydrogen production based on fossil fuels. As a way to minimize greenhouse gas emissions in the hydrocarbon-based hydrogen production process, methane direct decomposition technology has recently attracted attention. In order to improve the economic feasibility of the process, the simultaneous production of value-added carbon materials with hydrogen can be one of the most essential aspects. For that purpose, various studies on catalysis related to the quality and yield of high-value carbon materials such as carbon nanotubes (CNTs). In terms of process technology, a number of the research and development of fluidized-bed reactors capable of continuous production and improved gas-solid contact efficiency has been attempted. Recently, methane direct decomposition technology using a fluidized bed has been developed to the extent that it can produce 270 kg/day of hydrogen and 1000 kg/day of carbon. Plus, with the development of catalyst regeneration, separation and recirculation technologies, the process efficiency can be further improved. This review paper investigates the recent development of catalysts and fluidized bed reactor for methane direct pyrolysis to identify the key challenges and opportunities.

Analysis of Hydrodynamic Similarity in Three-Phase Fluidized Bed Processes (삼상유동층 공정에서 수력학적 Similarity 해석)

  • Lim, Ho;Lim, Hyun-Oh;Jin, Hae-Ryoung;Lim, Dae-Ho;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.790-797
    • /
    • 2011
  • Hydrodynamic similarity was analyzed by employing scaling factor in three phase fluidized beds. The scaling factor was defined based on the holdups of gas, liquid and solid particles and effectivity volumetric flux of fluids between the two kinds of fluidized beds with different column diameter. The column diameter of one was 0.102 m and that of the other was 0.152 m. Filtered compressed air, tap water and glass bead of which density was 2,500 kg/$m^3$ were used as gas, liquid and solid phases, respectively. The individual phase holdups in three phase fluidized beds were determined by means of static pressure drop method. Effects of gas and liquid velocities and particle size on the scaling factors based on the holdups of each phase and effective volumetric flux of fluids were examined. The deviation of gas holdup between the two kinds of three phase fluidized beds decreased with increasing gas or liquid velocity but increased with increasing fluidized particle size. The deviation of liquid holdup between the two fluidized beds decreased with increasing gas or liquid velocity or size of fluidized solid particles. The deviation of solid holdup between the two fluidized beds increased with increasing gas velocity or particle size, however, decreased with increasing liquid velocity. The deviation of effective volumetric flux of fluids between the two fluidized beds decreased with increasing gas velocity or particle size, but increased with increasing liquid velocity. The scaling factor, which was defined in this study, could be effectively used to analyze the hydrodynamic similarity in three phase fluidized processes.

A Study on the Experiments and Prediction of Desulfurization Efficiency in Fluidized Bed Combustor (유동층연소로에서 탈황효율 실험 및 예측에 관한 연구)

  • 조상원;김영식
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.93-101
    • /
    • 2002
  • We have studied that the prediction of desulfurization efficiency by limestone in fluidized-bed coal combustor. The results were presented as follows : Firstly, the bed temperature had a great deal of effect on the desulfurization and the optimum temperature of limestone was 85$0^{\circ}C$~90$0^{\circ}C$. Secondly, as the velocity and temperature increased, $K_{s}$, K and the desulfurization efficiency increased. So, $k_{s}$, $k_{d}$ highly depended on the air velocity and bed temperature, and $k_{s}$, $k_{d}$ were 82.53 mm/sec, 0.0041/sec at 0.2 m/sec, 85$0^{\circ}C$, $k_{s}$, $k_{d}$ were 125.62 mm/sec. 0.00532/sec at 0.3 m/sec, 80$0^{\circ}C$ respectively. And $k_{s}$, $k_{d}$ were 143.78 mm/sec, 0.00568/sec at 0.3 m/sec, 85$0^{\circ}C$. Thirdly, as a result of desulfurization modeling, there was good agreement between theory and experiments as anthracite fraction increased. At 3.0 of optimum Ca/S molar ratio, there was very good agreement between theory and experiments.riments.riments.s.

The Dynamic Characteristics of a Two Phase Fluidized Beds (이상 유동층 반응기의 동특성에 관하여)

  • Suh, Myung-Gyo;Suh, Jung-Ho;Kang, Jun-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.210-213
    • /
    • 1993
  • The purpose of this research was to investigate fluidization characteristics of three solid particles, correlations between voidage and superficial velocity. The inside diameter of a column did not affect the fraction void-superficial velocity relationship for fluidization systems which was obtained as follows: $\frac{u}{u_t}={\varepsilon}^{3.703}----Sea\;Sand$ $\frac{u}{u_t}={\varepsilon}^{3.5665}----long\;Exchange$ $\frac{u}{u_t}={\varepsilon}^{4.066}----GAC$ And the sphericial type media is good for fluidized systems as it maintains low voidage. Actually, if biofilm attached to media (bioparticle), the density became lower in fluidized bed biofilm reactor. Therefore, as the density of media become higher, it is easy to maintain fluidized beds.

  • PDF

Size and Rising Velocity of Liquid Drops in Liquid-Liquid Fluidized-Bed Extractors (유동층 액-액 추출기에서 액적의 크기 및 상승속도)

  • Jung, Sung-Hyun;Kim, Jae-Han;Kang, Tae-Gyu;Kang, Yong;Kim, Sang Done
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.34-38
    • /
    • 2005
  • Characteristics of size, rising velocity and distribution of liquid drops have been investigated in a immiscible liquid-liquid fluidized-bed whose diameter was 0.102 m and 2.5 m in height. Effects of velocities of dispersed (0~0.04 m/s) and continuous (0.02~0.14 m/s) liquid phases and fluidized particle size (1, 2.1, 3 or 6 mm) on the liquid drop properties in the extractor have been determined. The resultant flow behavior of liquid drops became more complicated with increasing the velocity of dispersed or continuous liquid phase. The resultant flow behavior of liquid complicated with increasing the velocity of dispersed or continuous liquid phase. The resultant flow behavior of liquid drops depended strongly upon the drop size and its distribution. The drop size increased with increasing dispersed phase velocity, but decreased with increasing particle size. However, the size of liquid drop exhibited a local maximum with increasing continuous liquid velocity. The size and rising velocity of liquid drops have been well correlated in terms of operating parameters.

Attrition Characteristics of Korean Antracite Ash in Fluidized Bed Combustors (유동층 연소로에서 국내탄 회재의 마모 특성)

  • Lee, See Hoon;Kim, Sang Done;Kim, Jae Sung;Lee, Jong Min
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.547-551
    • /
    • 2006
  • In the reactor following the American standard test method (ASTM) D5757-95 and lab-scale fluidized bed combustor, the attrition characteristics of sand and ash of Korean anthracite were investigated. The attrition characteristics, such as particle size distribution of fly ash, attrition rate, and attrition ratio etc, were studied with variation of gas velocities. The particle attrition of ash was more active than sand which was generally used as a fluidized material and also the attrition index of ash taken by ASTM D5757-95 was 5 times higher than that of sand. The formation of fine particles continuously occurred due to particle attrition with increasing gas velocities. The following equation has been suggested for attrition rate of ash. $$\frac{dW}{dt}=-3.18{\times}10^{-7}(U-U_{mf})W$$.