• 제목/요약/키워드: Fluidized Bed Incineration

검색결과 11건 처리시간 0.017초

순환유동층에서 폐수슬러지와 석탄의 혼소 특성 (Incineration of Waste Water Sludge and Coal In a Circulating Fluidized Bed Combustor)

  • 배달희;선도원;박재현;류호정;박도현
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.165-172
    • /
    • 2004
  • Co-incineration of coal and wastewater sludge was r;erfonn:rl in a O.lMWth bench scale circulating fluidized bed combustor(CFBC) Sludge was received from a wastewater treatment plant in a dye industrial complex in Busan. Metropolis. Moisture content of received sludge was 80%. Coal and sludge mixture was prepared with weight ratio of 90/10, 85/15 and 80/20. Co-combustion characteristics of the coal and sludge mixture demonstrated stable combustion conditions. Component analysis, incineration characteristics, boiler performance was measured before and after the test and application for commercial 59MWth CFBC boiler. The release of hazardous components such as $SO_2$ and Cl was suppressed by the presence of inherent minerals of Ca, Na, K in coal and sludge mixture. Pre-drying was not essential but it was recommended for the benefits of manageability of sludge.

  • PDF

배치형 내부 사이클론식 순환유동층 연소로내 2차 공기 주입에 의한 슬러지 소각 유해 배가스 저감효과 (Effect of Secondary Air Injection on Emission from Sludge Incineration in a Batch-type Internally Cycloned Circulating Fluidized Bed Combustor)

  • 장석돈;신동훈;황정호
    • 한국연소학회지
    • /
    • 제7권3호
    • /
    • pp.16-22
    • /
    • 2002
  • Combustion performance of an internally cycloned circulating fluidized bed for paper sludge was discussed through a series of batch type experiments. Operation parameters such as water content, feeding mass of sludge and secondary air injection rate were varied to find out the effect on the combustion performance, which was examined with carbon conversion rate and pollutant emission such as CO and NOx. A conventional solid fuel reaction was observed in the experiments of varying water content and feeding mass of the sludge, which is characterized with kinetic limited reaction zone, diffusion limited reaction zone and transition zone. Secondary air injection with swirl enhances the mixing of the gas phase as well as the solid phase, and improves combustion efficiency accompanied with higher carbon conversion rate and lower pollutant emission rate.

  • PDF

RDF 유동층 연소시 Cl의 거동 (Chlorine behavior during fluidized bed combustion of RDF)

  • 이혜문;곽연호;김우현
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.137-141
    • /
    • 2001
  • The behavior of Cl is important to prevent HCl exhausted by incineration of RDF. Because RDF is composed of municipal wastes, its calorific value is very various. Thus components of RDF are to be analyzed and elemental analyze and calorific value are to be done. And in order to find the behavior of Cl during RDF combustion, Cl included in exhaust gas and ash is captured and analyzed. RDF which made by municipal and $Ca(OH)_2$ with regular ratio(Ca/0.5Cl) is incinerated in fluidized bed combustor. Cl included in exhaust gas and fly ash is captured and analyzed. Finally the change of Cl concentration included in exhaust gas and ash is analyzed and the behavior of Cl is investigated.

  • PDF

하수슬러지 유동층 소각에서 유동매체가 N2O 발생에 미치는 영향에 관한 연구 (A Study on the Effect of Fluidizing Media on the N2O Production in Fluidized Bed Incineration of Sewage Sludge)

  • 박종주;이승재;유인수;전상구;박영성;문승현
    • 청정기술
    • /
    • 제20권4호
    • /
    • pp.390-397
    • /
    • 2014
  • 하수슬러지를 유동층 소각으로 처리할 때 유동매체가 $N_2O$ 발생에 미치는 영향을 고찰하였다. 유동매체로 zeolite 분말을 혼합하여 2 mm의 구형으로 제조하였다. 유동사의 평균크기 0.4 mm인 것을 유동매체로 사용할시 최소유동화속도($U_{mf}$)는 0.44 m/s로 나타났으나, 2 mm zeolite 유동매체를 사용하였을 경우, 최소유동화속도는 0.5 m/s로 다소 증가하는 것을 알 수 있었다. 유동층 소각로 내경에 대한 유동층 높이의 비(bed aspect ratio)를 1.4에서 3.1로 증가시켰을 때, 최소유동화속도는 0.5 m/s 에서 0.7 m/s로 다소 증가하는 것을 알 수 있었다. 과잉공기비가 1.79이고, 유동층 온도는 $909^{\circ}C$, 공탑속도는 약 1.65 m/s의 운전 조건에서, 유동매체 양의 증가에 따라 배가스 $O_2$ 농도는 다소 감소하였으며, $CO_2$의 농도는 다소 증가하는 것으로 나타났다. 유동매체의 양이 6 kg (bed aspect ratio 1.98) 이상일 때 $N_2O$의 농도가 크게 감소하였는데, 이러한 감소는 $N_2O$의 NOx로 전환이라기보다는 zeolite 유동매체에 의한 $N_2O$ 분해 반응에 의한 것으로 사료되었다. 한편, zeolite 유동매체를 유동사와 혼합하여, 유동층 높이를 일정하게 유지하고, zeolite 유동매체의 혼합 비율과 유동층 온도를 변화시켰을 때, $N_2O$의 발생농도는 혼합비율 보다 유동층 온도에 의해 크게 의존하였으며, 고온으로 갈수록 감소하는 것을 알 수 있었다. 소각 운전 온도를 고려하였을 때, zeolite 유동매체의 소성 온도는 $900^{\circ}C$에서 수행하는 것이 효과적인 것으로 판단되었다.

Pilot plant 규모 유동충 소각로의 제지 슬러지 소각 용량에 관한 실험적 연구 (Experimental study on the capacity of pilot scale FBC for paper sludge)

  • 라승혁;문동진;강경태;신동훈;황정호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.199-203
    • /
    • 2002
  • In this paper, the effects of water contents on combustion characteristics of paper sludge and capacity of fluidized bed combustor(FBC) were investigated using 0.26m diameter, 1.75m height pilot-plant scale combustor. Combustion tests of paper sludge containing water contents between 40wt% and 50wt% were performed. The temperature and emission variation, the pressure inside combustor were measured to monitor the fluidization quality. The experimental results showed that 30kg/hr feeding rate of sludge containing water up to 45wt% was preferable for this system. Sludge loading rate, heat release rate were calculated from experimental data as major parameters showing FBC capacity. Comparsion with sludge loading rate from other source was also performed

  • PDF

소각시설 이행지표를 활용한 운영 현황 평가 (Evaluation of Operation Status for Incineration Facility Using Performance Index)

  • 김종환;박준석;배재근
    • 한국응용과학기술학회지
    • /
    • 제33권3호
    • /
    • pp.507-520
    • /
    • 2016
  • 본 연구는 소각시설을 규모별, 유형별로 평가하기 위하여 이행지표를 설정한 후 설문조사를 실시하였다. 설문대상 수는 2012년 기준 전국 184개 중 약 15%인 28개를 선정하였다. 규모별로 대규모(${\geq}100t/d$), 중규모(50~<100 t/d), 소규모(<50 t/d)로 나누고, 유형별로는 스토커, 열분해, 유동층으로 분류하였다. 이행지표는 기술성, 경제성, 환경성으로 대별한 후 각각 6개, 10개, 30개의 세부항목을 설정하고 5등급으로 나누어 점수를 부과하였다. 평가결과 소각시설 규모별로는 기술성, 경제성, 환경성 평가에서 모두 대규모 시설이 소규모 시설 보다 높은 점수를 받았으며, 종합점수에서도 동일한 경향을 나타내어 소각시설의 규모가 증가할수록 더 높은 평가 점수를 받는 것을 알 수 있었다. 소각시설 유형별로는 기술성, 경제성, 환경성을 종합 평가한 결과에서 스토커식(65.3점)이 유동상(59.0점) 및 열분해(58.3점) 보다 우수한 평가결과를 나타내었다. 특히 소각시설 평가시 기술성, 경제성, 환경성 중 경제성에서 뚜렷한 차이를 나타내었다.

실험실 규모 순환유동층 연소로에서 2차공기 주입이 냉간유동에 미치는 영향 (Secondary Air Injection Effect on Cold Flow in a Laboratory-scale Circulating Fluidized Bed Combustor)

  • 장석돈;라승혁;황정호;강경태
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.217-228
    • /
    • 2000
  • Circulating Fluidized Bed Combustor(CFBC) has been used for the incineration of waste sewage sludge and for the power generation. In this study hydrodynamic characteristics of two phase flow have been studied in a riser section of CFBC. A lab-scale riser is designed and SiC (Geldart type B) is used for solid particles. Experiments are performed by controlling the fluidization parameters including superficial velocity and secondary air to primary air ratio for determination of solid holdup profiles in the riser. Superficial velocities of each fluidization regime are well agreed with results predicted by a theoretical model. The results show that the axial solid holdup distributions calculated by measuring differential static pressures in the riser are found to show a basic profile described by a simple exponential function. Our flow regime during experiments mainly belongs to fast fluidization regime for particle size of 300${\mu}m$. As the SA/PA ratio increases, solid holdup in the lower dense region of the riser increases.

  • PDF

순환유동층 소각로의 수력학적 특성에 관한 연구 (Hydrodynamic Characteristics of Circulating Fluidized Bed Incinerator)

  • 변영철;박선호;황정호;김세원
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.173-182
    • /
    • 1999
  • Internally Circulating Fluidized Bed Combustor(ICFBC) has been used for the incineration of waste sewage sludge. In this study hydrodynamic characteristics of two phase flow have been studied in a riser section of ICFBC. A lab-scale riser(l/5 scale of pilot plant) is designed and SiC (Geldart type B) is used for solid particles. Experiments are performed by controlling the fluidization parameters including superficial velocity, particle diameter and secondary air to primary air ratio for determination of solid holdup profiles in the riser. Our flow regime during experiments mainly belongs to the onset of turbulent regime(for d_{p}:300{\mu}m) and fast fluidization regime(for d_{p}:100{\mu}m). Superficial velocities of each regime are well agreed with results obtained by other researches. The results show that the axial solid holdup distributions calculated by measuring differential static pressures in the riser are found to show a basic profile described by a simple exponential function. As the particle size decreases, solid holdup along the riser is more uniformly distributed. To prove these experimental results, numerical calculations are being performed.

  • PDF

슬러지 유동층 소각로의 프리보드 내 가스 혼합 및 반응 특성에 대한 실험 및 해석적 연구 (Experimental and Numerical Study on the Gas Mixing and Reaction in the Freeboard of a Fluidized Bed Incinerator for Sludge Treatment)

  • 김영민;신동훈;황승식
    • 한국연소학회지
    • /
    • 제16권4호
    • /
    • pp.8-15
    • /
    • 2011
  • The present study investigates the combustion phenomena in a sludge incinerator using experimental and numerical method. The temperature and gas concentration were measured at 33 points during operation of the incinerator in order to assess the mixing and combustion characteristics. Numerical simulation was also carried out using a commercial CFD code. Simplified inlet conditions were introduced in oder to predict the bulk solid combustion and the diffusion of the volatile matter released by pyrolysis of sludge. The experimental results showed that the combustion process is extremely inhomogeneous. Large variations were observed in the temperature and gas concentrations in the freeboard of the incinerator due to poor mixing performance between the air and the combustibles, which is caused by massive and bulk generation of volatile matter by fast pyrolysis of sludge particles. The boundary condition of the CFD simulation was found effective in predicting the poor mixing and combustion performance of the reactor.