• Title/Summary/Keyword: Fluidity Properties

Search Result 516, Processing Time 0.028 seconds

Statistical Analysis of the Physical Properties in a Slag-OPC-Gypsum System as a Compound Mixing Ratio

  • You, Kwang-Suk;Lee, Kyung-Hoon;Han, Gi-Chun;Kim, Hwan;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.477-482
    • /
    • 2007
  • The effect of the mixing ratio of compounds in a slag-OPC-Gypsum system on the physical properties of Slag cement is investigated in this study. $Na_2SO_4$ was used as an alkali activator. Blast furnace slag cement was prepared from a mixture of blast furnace slag, ordinary Portland cement and anhydride gypsum. The fluidity and the compressive strength according to the ratio of each mixture were analyzed in statistical analyses in order to discover the parameters influencing the fluidity and compressive strength. The results showed that the hydration of blast furnace slag took place with the addition of $Na_2SO_4$ and that column-crystalline ettringite was created as the main hydration product of the blast furnace slag. In addition, it was found that the compressive strength of blast furnace slag cement tends to increase when the ordinary Portland cement content is higher up to three days. However, it is known that the compressive strength tends to increase as the blast furnace slag content becomes higher with increases in the level of OPC after 28 days. As a result of this analysis, it is believed that the ordinary Portland cement content influences the initial compressive strength of blast furnace slag cement, and that in later days this is highly influenced by the slag content.

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.89-98
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 200mm of flow value and above 300kgf/$cm^2$ of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary Portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~15% AG.

Effect of Minor Additives on Casting Properties of AC4A Aluminum Casting Alloys (AC4A 알루미늄 합금의 주조특성에 미치는 미량 첨가원소의 영향)

  • Oh, Seung-Hwan;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.37 no.5
    • /
    • pp.148-156
    • /
    • 2017
  • The effects of minor additives on the casting properties of AC4A aluminum alloys were investigated. Measurements of the cooling curve and microstructure observations were conducted to analyze the effects of Ti-B and Sr minor elements during the solidification process. A fine grain size and an increase in the crystallization temperature for the ${\alpha}-Al$ solution were evident after the addition of 0.1wt% Al-5%Ti-1%B additive. The modification effect of the eutectic $Mg_2Si$ phase with the addition of 0.05% Al-10%Sr additive was prominent. A fine eutectic $Mg_2Si$ phase and a decrease in the growth temperature of the eutectic $Mg_2Si$ phase were evident. Fluidity, shrinkage and solidification-cracking tests were conducted to evaluate the castability of the alloy. The combined addition of Al-5%Ti-1%B and Al-10%Sr additives showed the maximum filling length owing to the effect of the fine ${\alpha}-Al$ grains. The macro-shrinkage ratio increased, while the micro-shrinkage ratio decreased with the combined addition of Al-5%Ti-1%B and Al-10%Sr additives. The macro-shrinkage ratio was nearly identical, while the micro-shrinkage ratio increased with the addition of the Al-10%Sr additive. The tendency of the occurrence of solidification cracking decreased owing to the effect of the fine ${\alpha}-Al$ grains and the modification of the $Mg_2Si$ phase with the combined addition of Al-5%Ti-1%B and Al-10%Sr additives.

Engineering Properties of the Concrete Using Reject Ash as Pre-mixed Fine Aggregate (리젝트애시를 잔골재로 프리믹스하여 활용하는 콘크리트의 공학적 특성)

  • Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.44-49
    • /
    • 2019
  • The purpose of this study is to analyze the fundamental characteristics of concrete with the change of reject ash(Reject ash=Rj) in the mixed aggregate where single grain aggregate of different grain size and aggregate of opposite grain size are mixed together, to analyze the possibility of a mixed aggregate system that premixes at an aggregate manufacturing plant and delivers it as one aggregate. As a result of the experimental study, it was found that the grain size regulation is satisfied if the mixed aggregate(CSb+SS) is substituted for about 5% of Rj. In the case of the fluidity slump, slump flow and air volume, it was found that they decrease as the substitution ratio of Rj increases, while the compressive strength increases as the substitution ratio of Rj increases. Therefore, it is analyzed that it would contribute greatly to an improvement of quality such as improvement of compressive strength if adequate fluidity and air quantity are secured by the water reducing agent and AE agent while premixing the Rj, which is disposed of by landfill, with about 5% of the mixed aggregate.

Effect of Grain Refiner and Eutectic Si Modifier on Casting Properties of Al-Si-Cu Alloy System Containing Recycled Scrap (재활용 스크랩 함유 Al-Si-Cu계 합금의 주조특성에 미치는 결정립 미세화제와 공정 Si 개량화제의 영향)

  • Sung, Dong-Hyun;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.38 no.6
    • /
    • pp.121-131
    • /
    • 2018
  • The effect of additives on the castability of the AC2BS aluminum alloy, which contains 35% recycled scrap, was investigated. For the wide utilization of the recycled scrap AC2BS aluminum alloy, the research results were compared to those with the AC2B virgin alloy, which is typical Al-Si-Cu alloy system. It was confirmed that the addition of Al-5%Ti-1%B increased the ${\alpha}$-Al nucleation temperature during solidification and decreased the grain size through cooling curve and microstructural observations of the recycled alloy. It was also found that an addition of Al-10%Sr decreased the eutectic Si growth temperature during the solidification process and modified the shape of the eutectic Si of the recycled alloy. The characteristics of fluidity, shrinkage and solidification crack strength were evaluated. For the AC2BS aluminum alloy containing 35% recycled scrap, both ${\alpha}$-Al grain refinement due to Ti-B and eutectic Si modifications due to Sr contributed to the improvement of the fluidity. The macro- shrinkage ratio increased with additions of both Al-10%Sr and Al-5%Ti-1%B and the micro-shrinkage ratio increased with the addition of Al-10%Sr but decreased with the addition of Al-5%Ti-1%B. The casting characteristics of TiB and Sr-treated AC2BS aluminum alloy containing 35% recycled scrap are similar to those of AC2B virgin alloy. The improvement of the solidification crack strength of the AC2BS aluminum alloy was possible by the reduction of the grain boundary the stress concentration through the enhancement by both ${\bullet}{\cdot}$-Al refinement and eutectic Si modification. More extensive use of the AC2BS aluminum alloy containing 35% recycled scrap can be expected in the future.

The Study of Printability on the Domestic Heat-set Web Inks (국산 Heat-set 윤전 잉크의 인쇄 적성에 관한 연구)

  • Ha, Young-Baeck;Choi, Jae-Hyuk;Kim, Hyoung-Jin;Lee, Won-Jae;Oh, Sung-Sang
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.2
    • /
    • pp.101-116
    • /
    • 2010
  • Last printing market is changing to high-quality color prints for web offset printing. But, color image reproduction based on the relative sheet-ped printing compared to the way, web offset printing are falling. Moreover, it's difficult to maintain the quality of the web offset print. The reason is the worker's decision to rely on. Therefore, the quality of prints was no difference in uniformity and objectivity. We have thought the reason, that the physical properties of inks such as fluidity, viscosity and tack. In addition, varies depending on the physical properties of paper, such as thickness, smoothness, roughness and porosity. Therefore, we studied the properties of ink and paper on the relations between the properties used IGT printability tester. This study of domestic web offset printing inks and papers on the relationship between physical properties and printability were studied. So, to improve printability will be used as the basis resources for web offset printing.

Experimental Study on Rheological Properties of Alkali Activated Slag Pastes with Water to Binder Ratio (물 결합재 비에 따른 알칼리 활성 슬래그 페이스트의 레올로지 특성에 관한 실험적 연구)

  • Kim, Byeong-Jo;Song, Jin-Kyu;Song, Keum-Il;Oh, Myeong-Hyeon;Lee, Bang-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.511-519
    • /
    • 2015
  • Methods such table flow, slump and outflow time have used to be as a main evaluation criteria regards to fluidity of concrete. Since those methods mentioned above have some inaccuracies which are up to its condition of test. Studies that evaluate fluidity applying the rheology has increased its portion in this field. Meanwhile, demands for AAS binder have been increased in accordance with its demand for this market, studies for rheology of AAS binder are little though. Therefore, this paper mainly deals a rheological peculiarity of AAS binder according to its condition of W/B ratio and alkali activators. The fluidity of AAS paste was evaluated with the index of table flow and outflow time. And shear stress following its shear rate was analyzed through rheological test. Rheological parameters were deduced through this rheological test of Bingham model and analyzed its interrelation with fluidity test. As the final outcome, it proposed the interrelation among table flow, yield stress, viscosity and outflow time. In basis of this study, we would like to suggest a reference for mixing AAS mortars and concretes.

Physical Analysis of High Strength Concrete According to Mixing Methods of Binders for Application Analysis of Pre-Mix Cement (프리믹스 시멘트의 활용성 분석을 위한 결합재의 혼합방법에 따른 고장도 콘크리트의 물성 분석)

  • Han, Cheon-Goo;Lee, Hae-Ill
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.127-133
    • /
    • 2009
  • It is important to increase the strength of binders in order to enhance the strength of concrete. However, when the mineral admixture used for high strength concrete is incorporated individually, its dispersibility decreases due to the phenomenon of compaction, which reduces its fluidity and results in insufficient strength being created. To solve this problem, we can pre-mix each binder in advance to disperse a mineral admixture among binders, which will strengthen the fluidity and strength of concrete. Therefore, this study analyzed the properties of high strength concrete depending on the mix method used, to determine the effect of pre-mix cements ranging from W/B 15 to 35%. It was found that the fluidity of pre-mix increased to a level higher than that of individual mix due to its dispersion and ball bearing effect. The air content was slightly decreased from the result of individual mix due to the micro filler effect, which causes fine particles of silica-fume to fill the voids among cement particles, while the setting time of pre-mix was shorter than that of individual mix, because enhanced dispersion of pre-mix affects hydration heat time. The compressive strength of pre-mix increased due to the phenomenon of compaction of gap structure, and the variation of coefficient decreased by 1.69% on average in strength variation.

Influence of Superplasticizers on Fluidity and Compressive Strength of Alkali Activated Slag Mortar (유동화제가 알칼리 활성 슬래그 모르타르의 유동 특성 및 압축 강도에 미치는 영향)

  • Kim, Dae-Wang;Oh, Sang-Hyuk;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • The cement industry brought very severe environment problems with massive carbon dioxide during its production. To solve this problem, attempts on Alkali-Activated Slag (AAS) concrete that perfectly substitutes industrial by-products such as ground granulated blast furnace slag (GGBFS) for cement are being actively made. AAS concrete is possible to have high strength development at room temperature, however, it is difficult to ensure the working time due to the fast setting time and the loss of workabillity because of the alkali reaction. In this study, the early age properties of alkali activated slag mortar are investigated to obtain the fundamental data for AAS concrete application to structural members. The water-binder ratio (W/B) was fixed at 0.35 and sodium hydroxide and waterglass as alkali activator was used. The compressive strength, the flow and the ultrasonic pulse velocity were measured according to the type of superplasticisers, which were naphthalene(N), lignin(L), melamine(M) and PC(P), up to a maximum of 2 percent by the mass of GGBFS. The results showed that adding melamine type of superplasticizer improved the fluidity of AAS mortar without decreasing the compressive strength, while naphthalene and polycarbonate type of superplasticizer had little effect on the fluidity of AAS mortar.

  • PDF

Basic Properties of Alkali-activated Mortar With Additive's Ratio and Type of Superplasticizer (감수제 종류 및 첨가율 변화에 따른 알칼리 활성 모르타르의 기초적 특성)

  • Han, Cheon-Goo;Chang, Ji-Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • Portland cement production is under critical review due to high amount of $CO_2$ gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. Many researchs on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the sources of material such as fly ash, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effect reduction of $CO_2$ gas. In this study, we investigated the influence of the fluidity, air content and compressive strength of mortar on alkaline activator in order to develop cementless fly ash and ground granulated blast-furnace slag based alkali-activated mortar with superplasticizer. In view of the results, we found out that Pn of fluidity and compressive strength is the best in four type of superplasticizer, and PNS of powder type of fluidity is better than that of liquid type in the case of AA.