• 제목/요약/키워드: Fluid-elastic

검색결과 352건 처리시간 0.025초

Effects of kinesiology tape after enucleation of mandibular dentigerous cysts

  • Kim, Min-Gyu;Kim, Moon-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제46권2호
    • /
    • pp.108-115
    • /
    • 2020
  • Objectives: Kinesiology tape (KT) creates a pulling force on the skin, thus improving blood and lymph flow by alleviating hemorrhage and congestion of lymphatic fluid. The authors hypothesized that the use of KT could be beneficial for the management of complications after head and neck surgery and designed this study to evaluate the effects of KT on swelling, pain, and trismus after enucleation of mandibular dentigerous cysts with third molar extraction. Materials and Methods: Forty patients who underwent enucleation of a dentigerous cyst with extraction of the mandibular third molar were selected. The patients were randomized into two groups (n=20 each): a KT group, where KT was applied after surgery in addition to basic postoperative care, and a control group, where patients received basic postoperative care without KT application. Swelling, pain, and trismus were evaluated before surgery (T0) and on postoperative days 1 (T1), 2 (T2), and 3 (T3). Cyst volume, gauze weight for assessing bleeding, and operation time were recorded. Results: There was a significant difference between the two groups in the change in swelling up to T1 and the change in swelling between T1 and T2. The maximum swelling in the KT group was significantly less than that in the No-KT group and maximum swelling appeared faster in the KT group than in the No-KT group. Both groups showed a mild pain response but there was no significant difference between the two groups. There was no significant difference on interincisal distance change between the two groups. There were no correlations between cyst volume, bleeding, operation time, and maximum swelling. Conclusion: KT can effectively manage facial swelling after oral and maxillofacial surgeries such as cyst enucleation and third molar extraction, thus improving postoperative patient satisfaction levels and quality of life.

Prediction of transverse settlement trough considering the combined effects of excavation and groundwater depression

  • Kim, Jonguk;Kim, Jungjoo;Lee, Jaekook;Yoo, Hankyu
    • Geomechanics and Engineering
    • /
    • 제15권3호
    • /
    • pp.851-859
    • /
    • 2018
  • There are two primary causes of the ground movement due to tunnelling in urban areas; firstly the lost ground and secondly the groundwater depression during construction. The groundwater depression was usually not considered as a cause of settlement in previous research works. The main purpose of this study is to analyze the combined effect of these two phenomena on the transverse settlement trough. Centrifuge model tests and numerical analysis were primarily selected as the methodology. The characteristics of settlement trough were analyzed by performing centrifuge model tests where acceleration reached up to 80g condition. Two different types of tunnel models of 180 mm diameter were prepared in order to match the prototype of a large tunnel of 14.4 m diameter. A volume loss model was made to simulate the excavation procedure at different volume loss and a drainage tunnel model was made to simulate the reduction in pore pressure distribution. Numerical analysis was performed using FLAC 2D program in order to analyze the effects of various groundwater depression values on the settlement trough. Unconfined fluid flow condition was selected to develop the phreatic surface and groundwater level on the surface. The settlement troughs obtained in the results were investigated according to the combined effect of excavation and groundwater depression. Subsequently, a new curve is suggested to consider elastic settlement in the modified Gaussian curve. The results show that the effects of groundwater depression are considerable as the settlement trough gets deeper and wider compared to the trough obtained only due to excavation. The relationships of maximum settlement and infection point with the reduced pore pressure at tunnel centerline are also suggested.

범프로 지지되는 다엽 포일을 갖는 가스 포일 베어링의 성능 해석 (Performance Predictions of Gas Foil Bearing with Leaf Foils Supported on Bumps)

  • 김태호;문형욱
    • Tribology and Lubricants
    • /
    • 제34권3호
    • /
    • pp.75-83
    • /
    • 2018
  • Microturbomachinery (< 250 kW) using gas foil bearings can function without oil lubricants, simplify rotor-bearing systems, and demonstrate excellent rotordynamic stability at high speeds. State-of-the-art technologies generally use bump foil bearings or leaf foil bearings due to the specific advantages of each of the two types. Although these two types of bearings have been studied extensively, there are very few studies on leaf-bump foil bearings, which are a combination of the two aforementioned bearings. In this work, we illustrate a simple mathematical model of the leaf-bump foil bearing with leaf foils supported on bumps, and predict its static and dynamic performances. The analysis uses the simple elastic model for bumps that was previously developed and verified using experimental data, adds a leaf foil model, and solves the Reynolds equation for isothermal, isoviscous, and ideal gas fluid flow. The model predicts that the drag torques of the leaf-bump foil bearings are not affected significantly by static load and bearing clearance. Due to the preload effect of the leaf foils, rotor spinning, even under null static load, generates significant hydrodynamic pressure with its peak near the trailing edge of each leaf foil. A parametric study reveals that, while the journal eccentricity and minimum film thickness decrease, the drag torque, direct stiffness, and direct damping increase with increasing bump stiffness. The journal attitude angle and cross-coupled stiffness remain nearly constant with increasing bump stiffness. Interestingly, they are significantly smaller compared to the corresponding values obtained for bump foil bearings, thus, implying favorable rotor stability performance.

Magneto-rheological and passive damper combinations for seismic mitigation of building structures

  • Karunaratne, Nivithigala P.K.V.;Thambiratnam, David P.;Perera, Nimal J.
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.1001-1025
    • /
    • 2016
  • Building structures generally have inherent low damping capability and hence are vulnerable to seismic excitations. Control devices therefore play a useful role in providing safety to building structures subject to seismic events. In recent years semi-active dampers have gained considerable attention as structural control devices in the building construction industry. Magneto-rheological (MR) damper, a type of semi-active damper has proven to be effective in seismic mitigation of building structures. MR dampers contain a controllable MR fluid whose rheological properties vary rapidly with the applied magnetic field. Although some research has been carried out on the use of MR dampers in building structures, optimal design of MR damper and combined use of MR and passive dampers for real scale buildings has hardly been investigated. This paper investigates the use of MR dampers and incorporating MR-passive damper combinations in building structures in order to achieve acceptable levels of seismic performance. In order to do so, it first develops the MR damper model by integrating control algorithms commonly used in MR damper modelling. The developed MR damper is then integrated in to the seismically excited structure as a time domain function. Linear and nonlinear structure models are evaluated in real time scenarios. Analyses are conducted to investigate the influence of location and number of devices on the seismic performance of the building structure. The findings of this paper provide information towards the design and construction of earthquake safe buildings with optimally employed MR dampers and MR-passive damper combinations.

부유체식 Container Yard에 관한 연구 (A Study on the Container Yard of Mega-Float Offshore Structure Type)

  • 박성현;박석주;고재용
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2002년도 추계공동학술대회논문집
    • /
    • pp.133-138
    • /
    • 2002
  • 우리나라가 세계 물류기지의 중심 곽으로 발전하기 위해서는 날의 급증하고 있는 물류량을 처리하기 위한 항만의 건설이 시급한 과제이다. 국토가 좁고 대도시에 인구가 집중하친 있으나 삼면이 바다로 둘러 쌓여 있는 우리나라의 경우에는 해양공간개발이 필요하다. 증가하는 물류량을 처리할 수 있는 항만의 건설을 위하여 본 연구에서는 초대형 부유체식 컨테이너 야드를 제안하고, 해상에 설치되는 초대형 부유체식 컨테이너야드가 파의 길이, 부유체 구조물의 강성, 해역의 수심, 입사하는 파의 방향 능에 따라서 어떠한 응답특성을 나타내는지 파악한다.

  • PDF

스위스 Mont Terri rock laboratory에서 수행된 암반 히터시험(HE-D)에 대한 열-수리-역학적 복합거동 수치해석 (Numerical modelling of coupled thermo-hydro-mechanical behavior of Heater Experiment-D (HE-D) at Mont Terri rock laboratory in Switzerland)

  • 이창수;최희주;김건영
    • 터널과지하공간
    • /
    • 제30권3호
    • /
    • pp.242-255
    • /
    • 2020
  • 본 연구에서는 FLAC3D가 Opalinus Clay 암반의 열-수리-역학적 복합거동을 재현하고 이를 예측할 수 있는지 그 적용성을 검토하고자 국제공동연구 DECOVALEX-2015에서 참여하였으며, 그 일환으로 스위스 Mont Terri Rock Laboratory에서 수행된 Heater Experiment-D (HE-D)에 대한 모델링을 수행하였다. FLAC3D를 이용한 수치해석의 타당성을 평가하기 위해 현장시험에서 계측된 16 지점의 온도, 6 지점의 공극수압, 그리고 22 지점의 변형률 데이터와 비교하였다. 대상 암반의 열-수리-역학적인 이방성을 고려함으로써 Opalinus Clay 암반의 온도 변화 그리고 온도변화에 따른 공극수압의 변화와 같은 열-수리적 거동은 전반적으로 유사하게 나타났으나, 역학적 거동의 경우 변형률 데이터를 비교했을 때 온도와 공극수압과는 달리 계산된 변형률 일부만이 유사한 거동을 보였다.

LNG 탱크 방열구조의 슬로싱 충격 응답 해석법에 관한 연구 (A Study on the Sloshing Impact Response Analysis for the Insulation System of Membrane Type LNG Cargo Containment System)

  • 노인식;기민석;이재만;김성찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.531-538
    • /
    • 2011
  • 멤브레인형 LNG 탱크의 구조적 안전성을 확보하기 위해서는 슬로싱에 의한 작용 압력과 구조응답을 정확히 평가할 수 있어야 한다. 탱크 방열구조에 작용하는 슬로싱 충격하중은 매우 불규칙적이며 이로 인한 구조 응답 역시 유탄성 거동을 포함하는 매우 복잡한 물리 현상이기 때문에 최신의 이론적 실험적 접근 방법을 동원하더라도 정확한 평가가 어렵다. 본 연구에서는 실험이나 수치해석으로부터 얻어진 슬로싱 압력 시계열을 이용하여 탱크 방열 구조의 구조응답을 간편하게 해석할 수 있는 방안을 제안하였다. 이 간이 해석법은 기본적인 삼각형 impulse 형태의 충격 압력에 대한 구조응답을 시간영역에서 과도응답해석법으로 계산한 후, 이렇게 구해진 구조물의 삼각형 응답함수를 조합하여 임의 형상의 압력 시계열에 대한 구조 응답을 구하는 방식이다. 여러 가지 예제 해석을 통하여 제안된 해석법의 타당성을 검토하였고, 이를 이용하여 실제 모형실험에서 얻어진 압력시계열을 바탕으로 구조응답을 계산하고 그 결과를 고찰하였다.

  • PDF

소성굴패각분말과 황토의 동시 사용에 의한 적조생물의 응집 (Flocculation of Red Tide Organisms in Sea Water by Using an Ignited Oyster Shell Powder and Loess Combination)

  • 김성재
    • 한국수산과학회지
    • /
    • 제36권6호
    • /
    • pp.716-722
    • /
    • 2003
  • This study determined the optimum dosage for coagulation reactions of red tide organisms (RTO) using a combination of ignited oyster shell powder (10sp) and loess and examined the electrokinetic and rheological characteristics of their flocs. Two kinds of RTO, Cylindrotheca closterium and Skeletonema costatum, were sampled in Masan Bay and cultured in the laboratory. Coagulation experiments were conducted using various concentrations of IOSP, loess, IOSP+1oess, RTO, and a jar tester RTO cell numbers were counted for both the supernatant and RTO culture solution. The removal rates increased rapidly with increasing IOSP concentrations up to 50 mg/L and loess concentrations up to 800 mg/L. A removal rate of $100\%$ was reached at 400 mg/L of IOSP and 6,400 mg/L of loess. The highest increment $(16.7\%)$ of the rates of coagulation reaction occurred using both IOSP and loess (50+200 mg/L) in comparison with IOSP alone. The rate of coagulation reaction using both IOSP and loess (50+200 mg/L), $90.6\%,$ was similar to employing either IOSP of 150 mg/L or loess of 3,200 mg/L. All of the coagulation liquids for RTO, IOSP (200 mg/L), loess (200 ma/L), and IOSP+1oess (200+200 mg/L) revealed non-Newtonian fluid properties and therefore their shear rate vs. shear stress curves were non-linear. The coagulation liquids revealed elastic body properties at a lower shear rate increasing in the following order: RTO, IOSP (200 mg/L), loess (200 mg/L), and IOSP+1oess (200+200 mg/L. IOSP+1oess (200+200 mg/L) especially demonstrated plastic flow properties at a lower shear rate.

부유체식 Container Yard에 관한 연구 (A Study on the Container Yard of Mega-Float Offshore Structure Type.)

  • 박성현;박석주;고재용
    • 한국항해항만학회지
    • /
    • 제27권1호
    • /
    • pp.49-54
    • /
    • 2003
  • 우리나라가 세계 물류기지의 중심 국으로 발전하기 위해서는 날로 급증하고 있는 물류량을 처리하기 위한 항만의 건성이 시급한 과제이다. 국토가 좁고 대도기에 인구가 급증하고 있으나 삼면이 바라도 둘러 쌓여 잇는 우리나라의 경우에는 해양공간개발이 필요하다. 증가하는 물류량은 처리할 수 있는 항만의 건설을 위하여 본 연구에서는 초대형 부유채식 컨테이너 야드를 제안하고 해상에 설치되는 초대형 부유채식 컨테이너 야드가 파의 길이 , 해역의 수심, 입사하는 파의 방향등에 따라서 어떠한 응답특성을 나타내는지 파악한다.

Aerodynamic admittances of bridge deck sections: Issues and wind field dependence

  • Zhang, Zhitian;Zhang, Weifeng;Ge, Yaojun
    • Wind and Structures
    • /
    • 제25권3호
    • /
    • pp.283-299
    • /
    • 2017
  • Two types of aerodynamic admittance function (AAF) that have been adopted in bridge aerodynamics are addressed. The first type is based on a group of supposed relations between flutter derivatives and AAFs. In so doing, the aero-elastic properties of a section could be used to determine AAFs. It is found that the supposed relations hold only for cases when the gust frequencies are within a very low range. Predominant frequencies of long-span bridges are, however, far away from this range. In this sense, the AAFs determined this way are of little practical significance. Another type of AAFs is based on the relation between the Theodorsen circulation function and the Sears function, which holds for thin airfoil theories. It is found, however, that an obvious illogicality exists in this methodology either. In this article, a viewpoint is put forward that AAFs of bluff bridge deck sections are inherently dependent on oncoming turbulent properties. This kind of dependence is investigated with a thin plate and a double-girder bluff section via computational fluid dynamics method. Two types of wind fluctuations are used for identification of AAFs. One is turbulent wind flow while the other is harmonic. The numerical results indicate that AAFs of the thin plate agree well with the Sears AAF, and show no obvious dependence on the oncoming wind fields. In contrast, for the case of bluff double-girder section, AAFs identified from the turbulent and harmonic flows of different amplitudes differ among each other, exhibiting obvious dependence on the oncoming wind field properties.