• Title/Summary/Keyword: Fluid turnover time

Search Result 3, Processing Time 0.018 seconds

A Study on Hydraulic Drawdown Test Model and Experimental Estimation of Desorption Rate Ratios of Fuel Filters (유압 저하시험 모델과 자동차 연료필터의 토설율 측정 실험 연구)

  • 이재천;계중읍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.205-213
    • /
    • 2003
  • This study describes the mathematical equation of drawdown test model and introduces the experimental test apparatus and procedure to estimate the desorption rate ratio of a filter. The characteristics of a hydraulic filtration system of drawdown test were demonstrated by numerical simulation for various properties of filters and operation conditions. Experiments for three kinds of fuel filters were conducted according to the proposed test method. And the test results of desorption rate ratio were compared with those values anticipated in precedent multipass filtration tests. Experimental results revealed the validation of drawdown test method proposed in this study. Domestic fuel filter yielded high desorption rate ratio comparing with other foreign products, which means that the Beta ratio decreases a lot during the test. The results also showed that filtration system model could be developed including desorption rate ratio to estimate the variable Beta ratio in service life.

Biokinetics of Carbohydrate and Lipid Metabolism in Normal Laying Hen [Part 1] -Determination of Turnover of Glucose- (정상산란계(正常産卵鷄)에 있어서 탄수화물(炭水化物)과 지질대사(脂質代謝)의 생동역학(生動力學) 제1보[第一報] -포도당 대사회전(代謝回轉)의 측정(測定)-)

  • Chiang, Y.H.;Riis, P.M.
    • Applied Biological Chemistry
    • /
    • v.20 no.2
    • /
    • pp.205-209
    • /
    • 1977
  • The pool size of plasma glucose, turnover rate and other concerned items for glucose metabolism in normal laying hen were investigated by a single-injection method using $U-C^{14}-glucose$. The 11.6 nCi of pure dose was injected to a hen normally fed through the wing vein. The glucose concentration in plasma sample taken at 5 minutes after injections was 214mgper 100ml. From the plottings of logarithmic standard specific activities of plasma taken from 5 to 120 minutes against the time after injection and from the regresion analysis, metabolic states were determined. The pool size was 1.07g, turnover rate was 0.024 per minute, turnover time was 41 minutes, utilization rate was 26mg/min. (0.83 g/hr/kg B.W. 3/4) and glucose space(extracellular fluid volume) was 25.3 per cent of body weight. The values obtained from. 10-50 minutes samples were similar to those described above, which we from 5-120 minutes samples.

  • PDF

Studies on Changes in the Hydrography and Circulation of the Deep East Sea (Japan Sea) in a Changing Climate: Status and Prospectus (기후변화에 따른 동해 심층 해수의 물리적 특성 및 순환 변화 연구 : 현황과 전망)

  • HOJUN LEE;SUNGHYUN NAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The East Sea, one of the regions where the most rapid warming is occurring, is known to have important implications for the response of the ocean to future climate changes because it not only reacts sensitively to climate change but also has a much shorter turnover time (hundreds of years) than the ocean (thousands of years). However, the processes underlying changes in seawater characteristics at the sea's deep and abyssal layers, and meridional overturning circulation have recently been examined only after international cooperative observation programs for the entire sea allowed in-situ data in a necessary resolution and accuracy along with recent improvement in numerical modeling. In this review, previous studies on the physical characteristics of seawater at deeper parts of the East Sea, and meridional overturning circulation are summarized to identify any remaining issues. The seawater below a depth of several hundreds of meters in the East Sea has been identified as the Japan Sea Proper Water (East Sea Proper Water) due to its homogeneous physical properties of a water temperature below 1℃ and practical salinity values ranging from 34.0 to 34.1. However, vertically high-resolution salinity and dissolved oxygen observations since the 1990s enabled us to separate the water into at least three different water masses (central water, CW; deep water, DW; bottom water, BW). Recent studies have shown that the physical characteristics and boundaries between the three water masses are not constant over time, but have significantly varied over the last few decades in association with time-varying water formation processes, such as convection processes (deep slope convection and open-ocean deep convection) that are linked to the re-circulation of the Tsushima Warm Current, ocean-atmosphere heat and freshwater exchanges, and sea-ice formation in the northern part of the East Sea. The CW, DW, and BW were found to be transported horizontally from the Japan Basin to the Ulleung Basin, from the Ulleung Basin to the Yamato Basin, and from the Yamato Basin to the Japan Basin, respectively, rotating counterclockwise with a shallow depth on the right of its path (consistent with the bottom topographic control of fluid in a rotating Earth). This horizontal deep circulation is a part of the sea's meridional overturning circulation that has undergone changes in the path and intensity. Yet, the linkages between upper and deeper circulation and between the horizontal and meridional overturning circulation are not well understood. Through this review, the remaining issues to be addressed in the future were identified. These issues included a connection between the changing properties of CW, DW, and BW, and their horizontal and overturning circulations; the linkage of deep and abyssal circulations to the upper circulation, including upper water transport from and into the Western Pacific Ocean; and processes underlying the temporal variability in the path and intensity of CW, DW, and BW.