• Title/Summary/Keyword: Fluid separation

Search Result 459, Processing Time 0.027 seconds

CFD ANALYSIS ON AIRCRAFT STORE SEPARATION VALIDATION (무장분리 안전성을 위한 전산해석)

  • Jueng, H.S.;Yoon, Y.H.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.14-16
    • /
    • 2007
  • A critical problem in the integration of stores into new and existing aircraft is the safe separation of the stores from the aircraft at a variety of flight conditions representative of the aircraft flight regime. Typically, the certification of a particular store/aircraft/flight condition combination is accomplished by a flight test. Flight tests are very expensive and do expose the pilot and aircraft to a certain amount of risk. Wind tunnel testing, although less expensive than flight testing, is still expensive. Computational Fluid Dynamics(CFD) has held out the promise of alleviating expensive and risk by simulating weapons separation computationally. The forces and moments on a store at carriage and at various points in the flow field of te aircraft can be computed using CFD applied to the full aircraft and store geometry. This study needs full dynamic characteristics study and flow analysis for securing store separation safety. Present study performs dynamic simulation of store separation with flow analysis using Chimera grid scheme which is usually used for moving simulations.

  • PDF

A Study of the Hull Form of Oil Recovery Vessel by Using Magnetic Fluid (자성유체를 이용한 유회수선박의 선형연구)

  • 이귀주;박영식;김경화;노준혁;장희문
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.1-5
    • /
    • 2001
  • A study on the new active type oil-water separation system including the oil-water separation system of magnetic film was carried out. Separation system is composed of several active types of circulating oil separation steps and one magnetic film separation step at final stage. At the magnetic separation step, ferrofluid easily forms a weak magnetic mixture with oil, which is from the water by magnetic field gradient. The vessel has been designed to run at the maximum speed of 25 knots. And two typical forms of SWATH and Catamaran have been studied as a new type of oil recovery vessel.

  • PDF

Numerical Analysis of the Whole Field Flow in a Centrifugal Fan for Performance Enhancement - The Effect of Boundary Layer Fences of Different Configurations

  • Karanth, K. Vasudeva;Sharma, N. Yagnesh
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.110-120
    • /
    • 2009
  • Generally the fluid flows within the centrifugal impeller passage as a decelerating flow with an adverse pressure gradient along the stream wise path. This flow tends to be in a state of instability with flow separation zones on the suction surface and on the front shroud. Hence several experimental attempts were earlier made to assess the efficacy of using boundary layer fences to trip the flow in the regions of separation and to make the flow align itself into stream wise direction so that the losses could be minimized and overall efficiency of the diffusion process in the fan could be increased. With the development of CFD, an extensive numerical whole field analysis of the effect of boundary layer fences in discrete regions of suspected separation points is possible. But it is found from the literature that there have been no significant attempts to use this tool to explore numerically the utility of the fences on the flow field. This paper attempts to explore the effect of boundary layer fences corresponding to various geometrical configurations on the impeller as well as on the diffuser. It is shown from the analysis that the fences located on the impellers near the trailing edge on pressure side and suction side improves the static pressure recovery across the fan. Fences provided at the radial mid-span on the pressure side of the diffuser vane and near the leading edge and trailing edge of the suction side of diffuser vanes also improve the static pressure recovery across the fan.

Design of Fluorescence Multi-cancer Diagnostic Sensor Platform based on Microfluidics (미세 유체 기반의 형광 다중 암 진단 센서 플랫폼 설계)

  • Lee, B.K.;Khaliq, A.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.55-61
    • /
    • 2022
  • There is a major interest in diagnostic technology for multiple cancers worldwide. In order to reduce the difficulty of cancer diagnosis, a liquid biopsy technology based on a microfluidic device using trace amounts of biofluids such as blood is being studied. And optical biosensing, which measures the concentration of analytes through fluorescence imaging using biofluids, requires various strategies to improve sensitivity, and specialists and equipment are needed to carry out these strategies. This leads to an increase in diagnostic and production costs, and it is necessary to develop a technology to solve this problem. In this paper, we design and propose a fluorescent multi-cancer diagnostic sensing platform structure that implements passive self-separation technology and molecular recognition activation functions by fluid mixing, only with the geometry and microfluidic phenomena of microchannels based on self-driven flow by capillary force. In order to check the parameters affecting the performance of the plasma separation part of the designed sensor, the hydrodynamic diameter of the channel and the viscosity of the fluid were set as variables to confirm the formation of plasma separation flow through simulation. And finally, we propose an optimal sensor platform structure.

Rotordynamic Analysis and Experimental Investigation of the Turbine-Generator System Connected with Magnetic Coupling (마그네틱 커플링으로 연결된 터빈-발전기 시스템의 로터다이나믹 해석 및 실험적 고찰)

  • Kim, Byung Ok;Park, Moo Ryong;Choi, Bum Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.32-38
    • /
    • 2013
  • This paper deals with the study on the rotordynamic and experimental analysis of turbine-generator system connected with a magnetic coupling. Although magnetic coupling has been used to torque transmission of chemical processing pump rotating at under 3,600rpm, magnetic coupling in this study is applied to high-speed turbine-generator system using a working fluid that is refrigerant such as ammonia or R-124a. Results of rotordynamic design analysis are as follows. The first, shaft diameter nearest to outer hub of magnetic coupling has a big effect on the $1^{st}$ critical speed of generator rotor. The second, if the $1^{st}$ critical speeds of turbine rotor and generator rotor have enough to separation margin in comparison to rated speed, the $1^{st}$ critical speed of turbine-magnetic coupling-generator rotor train has enough to separation margin regardless of connection stiffness of magnetic coupling. The analytical FE model is guaranteed by impact test on the prototype and condition monitoring such as measurements of vibration and bearing temperature is also performed.

An Experimental Study on Fluid Flow and Heat Transfer Around Four Circular Cylinders of In-line (직렬 4원주 주위의 유체유동 및 열전달에 관한 실험적 연구)

  • Choe, Soon-Youl;Kim, Min-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.691-697
    • /
    • 2008
  • Heat exchangers are commonly used in practice in a wide range of application, from heat and air-conditioning system in a household, to chemical processing and power production in large plant. An Experimental study was conducted to investigated the fluid flow and heat transfer around four circular cylinders of in-line in a cross flow of air. The local and average heat transfer characteristics for tube banks are investigated in the present study. Heat transfer in a heat exchanger usually involves convection in each fluid and conduction through the wall separating the two fluid. The in-line pitch ratio was in the range $1.5{\leq}L/d{\leq}4.0$, where L is the center distance and d the cylinder diameter, and in the Reynolds number $8,000{\leq}Re{\leq}50,000$. The local and mean Nusselt numbers were estimated. Subsequently, the heat transfer characteristics of four circular cylinders are found to exhibit a strong dependency upon the separation point of their upstream cylinders.

Laboratory Experiment of Two-layered fluid in a Rotating Cylindrical container (원통형 이층유체의 회전반 실험)

  • 나정열;최진영
    • 한국해양학회지
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 1993
  • A right cylindrical tank with sloping bottom and top (${\beta}-effect$) is filled with two-layered fluid and is put on the rotating table. External fluid of same density as the lower-layer fluid is continuously injected to drive the lower-layer current. By minimizing the interfacial stress between two layers the motion in the lower-layer deformed the shape of interface such that the upper-layer adjust itself to the variations of the interface in terms of its direction of flow patterns .The most significant parameter is the internal Froude Number($F_1$) and when $F_1$ is greater than 6 two-cellular circulation of the upper-layer changes its direction, there by creates a separation of Western boundary current. The separation position moves to the most northward when $F_1$ equals to 6.

  • PDF

Measurement and Correlation of Hinokitiol Solubility in Supercritical Carbon dioxide (초임계 이산화탄소에서 히노키치올의 용해도 측정과 예측)

  • Shin, Moon-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.489-492
    • /
    • 2011
  • Supercritical fluid technology has been an alternative for purification and separation of biological compounds in cosmetic, food, and pharmaceutical products. Solubility information of biological compounds in supercritical fluids is essential for choosing a supercritical fluid processes. The equilibrium solubility of hinokitiol was measured in supercritical carbon dioxide with a static method in the pressure range from 8 to 40 MPa and at temperatures equal to 313.2, 323.2 and 333.2 K. The experimental data were correlated well by Peng.Robinson equation of state and quasi-chemical nonrandom lattice fluid model.

  • PDF

Numerical investigation of ceramic particle movement for injected gas flow rate in cyclone separator system (사이클론 분리기 시스템 내에서의 가스 주입 유속에 따른 세라믹 입자 거동 전산모사)

  • 우효상;심광보;정용재
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.145-151
    • /
    • 2003
  • Using computational fluid dynamics (CFD) method, we investigated three-dimensional fluid flow field and particle movement with respect to the injected gas flow rate variation in typical cyclone separator system. The results of numerical investigation were deduced by coupling the analysis of fluid flow field with Wavier-stokes equation and the tracking of the particle trajectory with Langrangian approach. It was shown that the increasing of injected gas flow rate resulted in the increasing of pressure loss in the separator. This change of inner pressure had an effect on an aspect of the fluid flow in the separator. Particle movement was determined by fluid flow in the separator and was fully depended on a diameter of particles under the fixed flow rate. Increasing of injected gas flow rate was led to an increasing of the trace of particle, so the particles moved to the lower part of the separator. For this reason, the minimum diameters of the particles were decreased and increased the separation rate under the fixed particle diameter. In conclusion, the changes of injected gas flow rate have an important factor to the fluctuation of the fluid flow field and particle trajectory in the separator.