• 제목/요약/키워드: Fluid loss

검색결과 952건 처리시간 0.033초

분기관내 뉴턴 유체 및 비뉴턴 유체의 유동특성에 관한 연구 (A Study on the Flow Characteristics of Newtonian Fluid and Non-Newtonian Fluid in Dividing Tubes)

  • 하옥남;전운학;김중;이봉규;이희상;윤치한;이종인
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.113-131
    • /
    • 1998
  • The objective of the present study is to investigate the characteristics of the dividing flow in the laminar flow region. Using glycerine water solution(wt43%) for Newtonian fluid and the polymer of viscoelastic fluid(500wppm) for non-Newtonian fluid, this research investigates the flow state of the dividing tube in steady laminar flow region of the two dimensional dividing tube by measuring the effect of Reynolds number, dividing angle, and the flow rate ratio on the loss coefficient. In T- and Y-type tubes, the loss coefficients of the Newtonian fluid decreases in constant rate when the Reynolds number is below 100. The effect of the flow rate ratio on the loss coefficients is negligible. But when the Reynolds number is over 100, the loss coefficient with various flow rate ratios approach an asymptotic value. The loss coefficient of the non-Newtonian fluid for different the Reynolds number shows the similar tendency of the Newtonian fluid. And when the Reynolds number is over 300, the loss coefficient is approximately 1.03 regardless of flow rate ratio or the dividing angle. The aspect ratio does hardly influence the reattachment length and the loss coefficient of both Newtonian and non Newtonian fluid. The loss coefficient decreases as the Reynolds number increases. The loss coefficient of Newtonian fluid is larger than that of non-Newtonian fluid.

  • PDF

Loss of Torque on Magnetic Fluid Seals with Rotating-shafts

  • Hu, Jianhui;Zhao, Meng;Wang, Lu;Zou, Jibin;Li, Yong
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.286-290
    • /
    • 2017
  • The effects of loss of torque on magnetic fluid seals with rotating-shafts and the general difficulty of studying magnetic fluid seals are the focus of this work. The mechanism underlying loss of torque on such seals is analyzed using theoretical methods that show that loss of torque can be affected by several factors, including the velocity of the rotating-shaft, the structure of the sealing device, the characteristics of the magnetic field, and the characteristics of the magnetic fluid. In this paper, a model of the loss of torque is established, and the results of finite element analysis and testing and simulations are analyzed. It is concluded that (i) the viscosity of the magnetic fluid increased with the intensity of the magnetic field within a certain range; (ii) when the magnetic fluid was saturated, the increase in loss of torque tended to gradually slow down; and (iii) although the axial active length of the magnetic fluid may decrease with increasing speed of the rotating-shaft, the loss of torque increased because of increasing friction.

절삭유제의 환경영향을 고려한 밀링공정의 최적화 (Optimization of Milling Process Considering the Environmental Impact of Cutting Fluids)

  • 장윤상;김주현
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.14-20
    • /
    • 1998
  • Cutting fluid is a factor which has big effects on both machinability and environment in machining process. The loss of cutting fluids may be reduced by the optimization of machining parameters in process planning. In this study, the environmental impact of fluid loss is analyzed. The fluid loss models in milling process are constructed with the machining parameters. The models are utilized to obtain the optimal machining parameters to minimize the fluid loss. The factors with significant effects on the fluid loss are analyzed by ANOVA test. Finally, optimal parameters are suggested considering both machining economics and environmental impact. This study is expected to be used as a part of a framework for the environmental impact assessment of machining process.

  • PDF

접수 구조물의 연성손실계수 변화에 관한 연구 (A Study on the Characteristics of Coupling Loss factor Associated with Fluid Loading)

  • 류정수
    • 한국음향학회지
    • /
    • 제19권6호
    • /
    • pp.17-22
    • /
    • 2000
  • 항공기나 선박과 같은 복잡한 구조물의 광대역 진동, 소음 예측을 위해 통계에너지해석법(SEA)이 널리 이용되고 있다. SEA를 이용해 접수 구조물의 진동, 소음을 정확히 해석하기 위해서는 접수에 의한 각 파라메터의 변화를 알아야만 한다. 본 연구에서는 기본 결합 요소인 'L'형과 'T'형 선결합 구조물에서 접수를 고려한 연성손실계수를 해석하고 공기중 진동시의 해석 결과와 비교하였다. 또한 'L'형, 'T'형 선결합을 가지는 단순한 형상의 steel box가 수중에서 진동하는 경우에, 접수에 의한 연성손실계수 변화가 세부시스템의 진동에 미치는 영향을 살펴보았다. 이를 통해, 구조물이 접수될 때 발생하는 연성손실계수의 변화를 확인하였으며, SEA를 이용한 접수 구조물의 진동 및 소음 해석시 결과의 신뢰성을 높이기 위해서는 접수에 의한 모드밀도, 내부손실계수 변화와 더불어 접수에 의한 연성손실계수 변화를 반드시 고려하여야 함을 확인하였다.

  • PDF

수액질환(水液疾患)의 병기(病機) 및 치료원칙(治療原則)에 대한 비교고찰 - "동의보감(東醫寶鑑)"의 편제(編制)를 중심으로 - (The comparative study on the metabolism of water-diseases and its' fundamental rule of treatment - Based on the formation of Dongeubogam -)

  • 백상룡
    • 한국한의학연구원논문집
    • /
    • 제9권1호
    • /
    • pp.65-79
    • /
    • 2003
  • Many of the diseases that occur in a life being are either closely related to water, or they occur by loss or deterioration of water metabolism. There are six parts of study on this subject in ${\ulcorner}$Dongeubogam${\lrcorner}$. The parts are, the part of Jinaek the part of Dameum the part of Sobyeon the part of Bujong the part of Changman and the part of Seub. In these parts, it mentions loss of perspiration, abnormal urination, edema, abdominal dropsy, formation of abnormal body fluid and intrusion of dampness into the body and etc as the abnormal water metabolism. Loss of perspiration and urination is a process of eliminating the dampness in the body. Perspiration would be the abnormality of yanghwa[陽化]. Urination would be the loss of eumhwa[陰化]. Eum[飮] is the fluid accumulated in the body that failed to go through the process of Cihwa[氣化]. Dam[痰] is formed when the body fluid is heated by the smoking-fire. Meanwhile, the dampness occurs when the water penetrates into the bones, muscles and joints. Edema and abdominal dropsy are both outcomes of accumulated body fluid. Edema is the liquified body fluid congested on the surface or the peripheral ends of the body. Abdominal dropsy is congestion of fluid, that lost the characteristic of blood due to blood deterioration, in the abdominal part.

  • PDF

Optimal layout of a partially treated laminated composite magnetorheological fluid sandwich plate

  • Manoharan, R.;Vasudevan, R.;Jeevanantham, A.K.
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.1023-1047
    • /
    • 2015
  • In this study, the optimal location of the MR fluid segments in a partially treated laminated composite sandwich plate has been identified to maximize the natural frequencies and the loss factors. The finite element formulation is used to derive the governing differential equations of motion for a partially treated laminated composite sandwich plate embedded with MR fluid and rubber material as the core layer and laminated composite plate as the face layers. An optimization problem is formulated and solved by combining finite element analysis (FEA) and genetic algorithm (GA) to obtain the optimal locations to yield maximum natural frequency and loss factor corresponding to first five modes of flexural vibration of the sandwich plate with various combinations of weighting factors under various boundary conditions. The proposed methodology is validated by comparing the natural frequencies evaluated at optimal locations of MR fluid pockets identified through GA coupled with FEA and the experimental measurements. The converged results suggest that the optimal location of MR fluid pockets is strongly influenced not only by the boundary conditions and modes of vibrations but also by the objectives of maximization of natural frequency and loss factors either individually or combined. The optimal layout could be useful to apply the MR fluid pockets at critical components of large structure to realize more efficient and compact vibration control mechanism with variable damping.

유동속도가 단순확장관 음향투과손실에 미치는 영향 해석 (Effects of Fluid Velocity on Acoustic Transmission Loss of Simple Expansion Chamber)

  • 권진;정의봉;홍진숙
    • 한국소음진동공학회논문집
    • /
    • 제22권10호
    • /
    • pp.994-1002
    • /
    • 2012
  • Acoustic power transmission loss(TL) is an important performance of the muffler system. TL will be affected by the velocity of the fluid in duct since acoustic pressure varies according to the fluid velocity. In this paper, two kinds of fluid model, potential flow and turbulent flow, for the fluid flowing in simple expansion chamber are considered. The effects of their two fluid models in acoustic TL are investigated for the straight and L-shaped simple expansion chamber. In higher frequency range, the characteristics of TL of the two fluid models show different results. The variation of TL according to the fluid velocity is shown more distinctly when turbulence model is used. Turbulent flow model should be used to obtain better estimation of acoustic TL in higher frequency range.

수정 fluid loss 시험을 이용한 연직 차수벽에 생성된 벤토나이트 필터케익 특성 평가 (Characteristics of Bentonite Filter Cake on Vertical Cutoff Walls Evaluated by Modified Fluid Loss Test)

  • 웽테바오;박문석;임지희;최항석;한신인
    • 한국지반공학회논문집
    • /
    • 제27권2호
    • /
    • pp.53-62
    • /
    • 2011
  • 연직 차수벽 시공 시, 벤토나이트 슬러리는 토양층으로 여과되면서 차수벽의 측벽 표면에 필터케익 층을 형성하고 이렇게 형성된 필터케익은 차수벽의 자체 투수계수보다 매우 낮은 값을 갖는다. 본 연구에서는 수정 fluid loss 시험을 수행하여 다양한 작용압력 하에서 슬러리월 시공현장에서 주로 사용되는 세 가지 종류의 벤토나이트로 형성된 필터케익의 투수계수를 평가하였다. 수정 fluid loss 시험에서는 일반적인 연직 차수벽 시공 조건을 반영하기 위해 중량비 4, 6, 8% 농도의 벤토나이트 슬러리를 적용하였다. 벤토나이트 필터케익의 투수계수를 예측하기 위해 수정 fluid loss 시험 결과를 기존에 제안된 두 가지 방법을 이용하여 해석하였다. 본 연구결과로부터 평가된 세 가지 벤토나이트 필터케익의 투수계수는 $2.15{\times}10^{-11}m/s$$2.88{\times}10^{-10}m/s$ 범위로 이는 일반적인 연직차수벽 뒤채움재의 설계값 보다 10-1000배 가량 작음을 알 수 있다. 또한, 필터케익 내 응력분포와 필터케익의 두께가 각 조건에 대해 비교되었다.

Fast transport with wall slippage

  • Tang, Zhipeng;Zhang, Yongbin
    • Membrane and Water Treatment
    • /
    • 제12권1호
    • /
    • pp.37-41
    • /
    • 2021
  • This paper presents the multiscale calculation results of the very fast volume transport in micro/nano cylindrical tubes with the wall slippage. There simultaneously occurs the adsorbed layer flow and the intermediate continuum fluid flow which are respectively on different scales. The modeled fluid is water and the tube wall is somewhat hydrophobic. The calculation shows that the power loss on the tube no more than 1.0 Watt/m can generate the wall slippage even if the fluid-tube wall interfacial shear strength is 1 MPa; The power loss on the scale 104 Watt/m produces the volume flow rate through the tube more than one hundred times higher than the classical hydrodynamic theory calculation even if the fluid-tube wall interfacial shear strength is 1 MPa. When the wall slippage occurs, the volume flow rate through the tube is in direct proportion to the power loss on the tube but in inverse proportion to the fluid-tube wall interfacial shear strength. For low interfacial shear strengths such as no more than 1 kPa, the transport in the tube appears very fast with the magnitude more than 4 orders higher than the classical calculation if the power loss on the tube is on the scale 104 Watt/m.

분기관에서 비뉴턴 유체의 유동특성에 관한 연구 (A study on the flow characteristics of non-Newtonian fluid flows in dividing tubes)

  • 이행남;하옥남;전운학
    • 한국해양공학회지
    • /
    • 제10권4호
    • /
    • pp.118-127
    • /
    • 1996
  • Flow patterns of fluid flow in dividing trbe were visualized, and the energy losses due to dividing were measured in laminar dividing flow of the viscoelastic fluid and its solution in tube junctions with dividing angles of $90^{\circ}$, $60^{\circ}$, $65^{\circ}$ and $15^{\circ}$. Two separation zones were observed. swelling of the streamline to the main tube or to lateral tube was observed. The sizes of the separation zones depend on the Reynolds number, the dividing angle and the dividing flow rate. The energy loss coefficients decrease with increasing Reynolds number, but their decreasing rate decreases with increasing Reynolds number as the sizes of the separation zone increase. The effect of dividing angle on the energy loss coefficients and separation is greater for main tube than for the lateral tube.

  • PDF