• Title/Summary/Keyword: Fluid inclusion

Search Result 213, Processing Time 0.033 seconds

Role of Gel to Fluid Transition Temperatures of Polydiacetylene Vesicles with 10,12-Pentacosadiynoic Acid and Cholesterol in Their Thermochromisms

  • Kwon, Jun Han;Song, Ji Eun;Yoon, Bora;Kim, Jong Man;Cho, Eun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1809-1816
    • /
    • 2014
  • This study demonstrates gel-to-fluid transition temperatures of polydiacetylene bilayer vesicles could play important roles in their colorimetric transition temperatures. We prepared five types of polydiaceylene vesicles with 10,12-pentacosadiynoic acid (PCDA) and cholesterol (0-40 mol % of total content). From temperature-dependent observations of the optical signals (colors and UV-vis spectra), the blue-to-red colorimetric transition temperatures of polydiacetylene vesicles were decreased with the cholesterol contents. A further study with microcalorimetry and dynamic light scattering revealed that the polydiacetylene vesicles first underwent gel-to-fluid transitions, which were followed by event(s) responsible for the colorimetric transitions. Energies required for each event were quantified from analysis of the peaks in the microcalorimetry thermograms. The inclusion of cholesterol in the vesicles decreased both the gel-to-fluid and the colorimetric transition temperatures, suggesting that the colorimetric transition of the polydiacetylene vesicles was mediated by the former event although the event was not the direct reason for the color change.

Gold-Silver Mineralizations in the Imgye District (임계지역(臨溪地域)의 금(金)-은(銀) 광화작용(鑛化作用))

  • Park, Hee-In;Hwang, Jeong;Huh, Soon-Do
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.379-395
    • /
    • 1992
  • The gold ore deposits of Nakcheon, Gongyeong and Dongmyeong mine in the Imgye district are E-W trending fissure filling veins emplaced in Precambrian Jungbongsan granite and sedimentary rocks of Cambrian Yangdeog group. The K-Ar age for vein alteration sericite and vein laced muscovite are 73 and 93 Ma, respectively. Vein structure and mineralogy indicate the three distinct depositional stages: I) basemetal sulfides and tin minerals, II) gold-basemeatl sulfides, III) gold-silver-basemetal sulfides. Major gold and silver ore minerals are electrum, native silver, pyrargyrite and argentite. Fluid inclusion data indicate that filling temperatures were from $350^{\circ}C$ to $190^{\circ}C$ through stage I, II and III. Salinities were in the range of 0.0~9.5 NaCl eq.wt.% and do not reveal any systematic trend. Intermittent boiling of ore fluid during stage I is indicated by fluid inclusions in quartz. Fluid pressure during stage I which is estimated from fluid inclusions showing boiling evidence range from 50 to 100 bars. Gold ore deposits of the Imgye district were formed under higher temperatures and lower sulfur fugacities compared with the Eunchi silver ore deposits about 8 Km apart from the Imgye district.

  • PDF

Epithermal Gold-Silver Mineralization and Depositional Environment of Carbonate-hosted Replacement Type Baegjeon Deposits, Korea (탄산염암 층준교대형 백전광상의 천열수 금-은 광화작용과 생성환경)

  • Lee, Chan Hee;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.105-117
    • /
    • 1996
  • The Baegjeon Au-Ag and Sb deposits, small of disseminated-type gold deposits are formed as a result of epithermal processes associated a shallow-seated Cretaceous Yeogdun granitoids intrusion. The orebodies are formed by the replacement of carbonate minerals in thin-bedded oolitic limestone beds favorable for mineralization within the upper-most Cambrian Pungchon Limestone Formation. The mineralization can be recognized one stage, ore minerals composed of base metal sulfides, electrum, AgSb-S, Ag-Cu-S, and Sb-S minerals. Gold-bearing minerals consist of electrum and submicroscopic invisible gold in pyrite and arsenopyrite. The composition of electrums ranges from 33.58 to 63.48 atomic % Ag. Fluid inclusion studies reveal that ore fluids were low saline $NaCl-CO_2-H_2O$ system. Temporary fluid mixing and boiling occured in later stage. Fluid inclusion data indicates the homogenization temperatures and salinities of NaCl eqivalent wt% were 176 to $246^{\circ}C$ and from 0.0 to 4.8 wt%, respectively. And $-logfs_2$, of mineralization obtained by thermodynamic considerations as 12.4 to 13.8 atm. The ${\delta}^{34}S_{H_2S}$, values of hydrothermal sulfides were calculated to be 6.8 to 10.2‰ which was of sedimentary origin. The ${\delta}^{18}O_{H_2O}$ and ${\delta}^{13}C_{CO_2}$, range from -3.9 to 9.6‰, from -1.1 to -2.2‰, and ${\delta}D$ range from -89 to -118‰, respectively. The Au deposition during mineralization seems to have occurred as a result of decrease of temperature, $fs_2$, $fo_2$, and pH probably due to oxidation by meteoric water mixing, which destabilized original $Au(HS)^-{_2}$. The mineralization of the Baegjeon deposits is similar to the Carlin-type deposits characterized by sediments-hosted epithermal bedding replacement disseminated gold deposits.

  • PDF

Influence of Inclusion of Salicornia Biomass in Diets for Rams on Digestion and Mineral Balance

  • Abouheif, M.A.;Al-Saiady, M.;Kraidees, M.;Eldin, A. Tag;Metwally, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.967-973
    • /
    • 2000
  • A metabolism trial was conducted with 28 Najdi rams allocated into seven dietary groups to evaluate the effect of dietary inclusion of Salicornia bigelovii Torr biomass on nutrient digestibility, rumina I fluid metabolites and nitrogen and mineral balances. Either the stems (ST) or spikes (SP) of this seawater-irrigated halophyte were incorporated into complete diets at rates of 0, 10, 20 and 30% levels, replacing equal amounts of rhodesgrass hay in a ground mixed control diet. Digestibility of DM, OM, EE, NFE and fecal and urinary nitrogen were not affected by increased level of ST in the diet. As level of ST increased from 0 to 20% in the diets, CP digestibility and nitrogen retention approached their maximum (p<0.01), whereas CF digestibility reached its minimum (p<0.01). On the other hand, except for EE, digestion of all nutrients and nitrogen retention were linearly depressed (p<0.01) as SP increased in the diets from 10 to 30% level. Concentration of ammonia-N, total VFA and pH values in the rumen fluid were lower (p<0.01) with the ST- or SP-fed diets than with the control diet. Increasing level of ST or SP in the diet was associated with an increase (p<0.01) in the proportion of acetate and a decline (p<0.01) in molar percentage of propionate in the ruminal fluid. Sodium absorption increased (p<0.01) with increased ST and SP in the diets up to the 10 and 20% level, respectively, followed by constant absorption values up to the 30% level. When the level of ST in the diet gradually increased to 30%, a concomitant increased (p<0:01) in Ca and P absorption were obvious; whereas, increased level of SP in the diets from 0 to 30% resulted in noticeable (p<0.01) depression in Ca and P apparent absorption.

Mineral Paragenesis and Fluid Inclusion Study of Ssangjeon Tungsten Deposits (쌍전중석광상(雙田重石鑛床)의 광물공생(鑛物共生)과 유체포유물연구(流體包有物硏究))

  • Youn, Seok Tai;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.15 no.4
    • /
    • pp.221-233
    • /
    • 1982
  • Ssangjeon tungsten ore deposits is a complex pegmatite deposits embedded along the contact between pre-Cambrian Buncheon granite gneiss and amphibolite. This pegmatite vein developed 2 km along the strike and thickness varies from 10m to 40m. Mineral constituent of the normal pegmatite are quartz, microcline, plagioclase, muscovite, biotite, tourmaline and garnet. The vein paragenesis is complicated by repeated deposition of quartz but three distinct depositional stage can be recognized. Quartz A stage is the stage of the earliest milky white quartz deposition as a rock forming mineral of normal pegmatite. Quartz B stage is the stage of gray to dark gray quartz replace earlier formed normal pegmatite minerals. Quartz C stage is the stage of latest white translucent massive quartz replace quartz A and B. Tungsten ore minerals and other sulfide minerals were precipitated during quartz B stage. Ore minerals are ferberite and scheelite. Minor amount of molybdenite, arsenopyrite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, pentlandite, bismuthinite, native bismuth and marcasite accompanied. Fluid inclusion in quartz A and B are gaseous inclusions and liquid inclusions are contained in quartz C as a primary inclusions. Salinity of inclusions in quartz A and B ranges from 4.5 to 9.5 wt. % and from 5.1 to 6.0 wt. % equivalent NaCl respectively. Homogenization temperature of quartz A; quartz B and quartz C ranges from 415 to $465^{\circ}C$, from 397 to $441^{\circ}C$ and from 278 to $357^{\circ}C$. $CO_2$ content of the ore fluid increased at the ends of quartz B stage.

  • PDF

Stable Isotope and Fluid Inclusion Studies of the Manjang Copper Mine, South Korea (만장동광산(萬藏銅鑛山)에 대(對)한 유체포유물(流體包有物) 및 안정동위원소분석(安定同位元素分析) 연구(硏究))

  • Kim, Kyu Han;Shin, Jeung Sook
    • Economic and Environmental Geology
    • /
    • v.20 no.3
    • /
    • pp.169-177
    • /
    • 1987
  • The Manjang copper magnetite-fluorite orebodies are imbedded within the limestone beds of the Hwajonri Formation. The ore deposits are characterized by magnetite-fluorite bearing skarn orebody in the west orebody and copper sulfide veins of the central and main orebodies. This study includes fluid inclusion geothermometry, salinity analysis, stable isotope analysis, and application of phase rule to mineral associations in skarn ore. Ore minerals are closely associated with the skarn silicates such as garnet, wollastonite and epidote. Magnetite and fluorite are remarkable in the west orebody whereas chalcopyrite is dominate in the central and main orebodies where pyrite and pyrrhotite also appear as sulfide gangues. Homogenization temperature and salinity of fluid inclusions are measured ranging between $240^{\circ}C$ and $350^{\circ}C$, 6.3~12.9 wt. percent in quartz and $220^{\circ}C$ and $350^{\circ}C$, 8.5~9.9wt. percent in fluorite, respectively. This indicates that the filling temperature and salinity are higher in quartz than in fluorite with the tendency of both to be linearly decreased suggesting an attribution of meteoric water to the mineralization. $T-fo_2$ diagram in the Ca-Fe-Si system at 1 kb and $Xco_2$=0.02 shows that the mineral assemblages with decreasing temperature are andradite-hedenbergite-calcite, hedenbergite-andradite-quartz, magnetite-andradite-quartz, and magnetite-quartz-calcite, indicating that magnetite crystallizes mostly late skarn stage at lower temperature. According to the carbon and oxygen isotopic values of the host limestone and calcite in ores, the sourec of carbon might be mixture of host limestone and deep seated carbons. Sulfur isotope data imply that ore fluids be relatively homogeneous in sulfur isotopic composition, mainly derived from igneous source.

  • PDF

Gas Composition and Fluid Inclusion Studies of the Mesozoic Granitic Rocks in South Korea (남한의 중생대 화강암중의 가스성분과 유체포유물 연구)

  • Kim, Kyu Han;Park, Seong Sook;Ryuichi, Sugisaki
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.455-470
    • /
    • 1996
  • Mesozoic granitic rocks in the Korean peninsula contain $H_2$, $CH_4$, CO and rare $C_2H_6$. The Jurassic Daebo granites mostly belonging to the ilmenite series are predominated in $CH_4$. Meanwhile, the magnetite series Bulguksa granites of Cretaceous age in the Kyongsang basin and Okchon zone are relatively enriched in $CO_2$. The older granites have a wide variation of $CH_4/CO_2$ ratios (0.1~1.0) compared to those of the younger ones (0.1~0.5). This characteristics of gas compositions suggest that the Jurassic granites are principally derived from the partial melting of metasedimentary rocks with much reducing materials in the lower continental crust. On the other hand, the mantle source granitic magmas might be responsible for the Cretaceous granites characterized by dominant and homogeneous $CO_2$ gas compositions. Liquid-vapor homogenization temperatures of quartz in the Jurassic and Cretaceous granites range from 108 to $539^{\circ}C$ (av. $324^{\circ}C$) and 160 to $556^{\circ}C$ (av. $358^{\circ}C$), respectively. Their salinities are between 0.2 and 16.3 wt.% NaCl for the Jurassic granites and 0.4, and 15.6 wt.% NaCl for the Cretaceous ones. Fluid inclusions with solid daughter minerals lying on or near the halite equilibrium curve represent inclusion fluids from the magmatic stage. The type I and II fluid inclusions which are plotted apart from the equilibrium curve are considered to trap in late hydrothermal alteration stage with a increasing influx of metedric water.

  • PDF

Stable Isotope and Fluid Inclusion Studies of the Mugug Au-Ag Mineral Deposits (무극 금은 광상에 대한 유체포유물 및 안정동위원소 분석연구)

  • Kim, Kyu-Han;Kim, Ok-Joon;Chang, Weon-Sun
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 1990
  • A couple of Au-Ag-bearing epithermal quartz veins of Cretaceous(87.9Ma) in age are developed in the Cretaceous(112Ma) granodiorite batholith which was emplaced in Mesozoic Baegyari sedimentary formation. Au minerals consist mostly of electrum with a 54.2-61.9 wt% Au and are closely associated with sulfide minerals including pyrite, chalcopyrite, pyrrhotite, galena and sphalerite. Homogenization temperatures of fluid inclusions in quartz, fluorite and calcite are $196-368^{\circ}C$ (avg. $240^{\circ}C$), $74-176^{\circ}C$ (avg. $115^{\circ}C$) and $75-200^{\circ}C$ (avg. $119^{\circ}C$) respectively. Sulfur isotopic compositions( +5- +8‰) of ore sulfides indicate a deep-seated sulfur origin. Oxygen isotope compositions of different stages of quartz vary from +5.6 to +9.3‰ and calculated ${\delta}^{18}O$ values of ore fluid at $250^{\circ}C$ range from -3.2 to +0.4‰, reflecting an isotopically evolved ore fluid mixed with a $^{18}O$ depleted meteoric water under the variable mixing ratios between hydrothermal and meteoric waters. Isotopic data of calcite minerals support the above conclusions.

  • PDF

A Study on the Fluid Inclusions in the Minerals from the Dae Hwa Tungsten-Molybdenum Deposits (대화(大華) 중석휘수연광상산(重石輝水鉛床産) 광물중(鍵物中)의 유체포유물(流體包有物)에 관(關)한 연구(硏究))

  • Park, Hi In;Choi, Suck Won
    • Economic and Environmental Geology
    • /
    • v.7 no.2
    • /
    • pp.63-78
    • /
    • 1974
  • Daehwa tungsten-molybdenum deposits is fissure filled quartz veins occurring in Precambrian granite gneiss adjacent to the contact with Mesozoic biotite granite mass. Essential ore minerals are molybdenum and wolframite accompaning scheelite, cassiterite, chalcopyrite, pyrrhotite, pyrite and bismuthinites. Gangue minerals are quartz and little muscovte, fluorite, beryl and Carbonate minerals. Fluid inclusions in quartz, fluorite, beryl, scheelite and calcite have filling temperature ranges of $170-353^{\circ}C$. According to the studies of mineral paragenesis and filling temperature of fluid inclusion indicate that main tungsten and molybdnum mineralization have taken place with the minerals whose filling temperature ranges 205 to $353^{\circ}C$. Liquid $CO_2$ bearing fluid inclusions are characteristic in the quartz and early fluorite of tungsten and tungsten bearing molybdenum veins but hardly recognized from molybdemun veins. Estimated $CO_2$ concentration according to diagram proposed by the Takenouchi ranges from 10 to 20wt%. These facts suggest that tungsten mineralization may be related to the $CO_2$ content of the hydrothermal solution during the mineralizing period.

  • PDF

Gold and Silver Mineralization of the Soowang Ore Deposits in Muju, Korea (무주 수왕광상의 금-은 광화작용)

  • Park, Hee-In;Youn, Seok-Tai
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.484-494
    • /
    • 2004
  • The Soowang Au-Ag deposits occur as quartz veins which filled fissures in middle Cretaceous porphyritic granite an/or gneiss of the Precambrian Sobaegsan gneiss complex. The paragenetic studies suggest that vein filling can be divided into four identifiable stages (I to IV). Stage I is the main sulfide stage, characterized by the deposition of base-metal sulfide and minor electrum. Stage II is the electrum stage, whereas stage III represents a period of the deposition of silver-bearing sulfosalts and minor electrum. Stage IV is the post ore stage. Mineralogical and fluid inclusion evidences suggest that mineralization of the Soowang deposits were deposited by the cooling of the fluids from initial high temperatures 300$^{\circ}C$ to later low temperatures 150$^{\circ}C$. The salinity of the fluids were moderate, ranging from 10.4wt.% equivalent NaCl in sphalerite to 3.1wt.% equivalent NaCl in barite. The gold-silver mineralization of the Soowang mine occurred at temperatures between 140 and 250$^{\circ}C$ from fluids with log $fs_2$ from -12 to -18 atm. A consideration of the pressure regime during ore deposition, based on the fluid inclusion evidence of boiling, suggests lithostatic pressure of less than 210 bars. This pressure condition indicates that vein system of the Soowang deposit formed at depth around 800 m below the surface at the time of gold-silver mineralization.