• 제목/요약/키워드: Fluid flow phenomena

Search Result 405, Processing Time 0.022 seconds

Natural Convection in a Water Tank with a Heated Horizontal Plate Facing Downward (아래로 향한 수평가열판이 있는 수조에서의 자연대류)

  • Yang, Sun-Kyu;Chung, Moon-Ki;Helmut Hoffmann
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.301-316
    • /
    • 1995
  • experimental and computational studies ore carried out to investigate the natural convection of the single phase flow in a tank with a heated horizontal plate facing downward. This is a simplified model for investigations of the influence of a core melt at the bottom of a reactor vessel on the thermal hydraulic behavior in a oater filled cavity surrounding the vessel. In this case the vessel is simulated by a hexahedron insulated box with a heated plate Horizontally mounted at the bottom of the box. The box with the heated plate is installed in a water filled hexahedron tank. Coolers are immersed in the U-type water volume between the box and the tank. Although the multicomponent flows exist more probably below the heated plate in reality, present study concentrates on the single phase flow in a first step prior to investigating the complicated multicomponent thermal hydraulic phenomena. In the present study, in order to get a better understanding for the natural convection characteristics below the heated plate, the velocity and temperature are measured by LDA(Laser Doppler Anemometry) and thermocouples, respectively. And How fields are visualized by taking pictures of the How region with suspended particles. The results show the occurrence of a very effective circulation of the fluid in the whole How area as the heater and coolers are put into operation. In the remote region below the heated plate the new is nearly stagnant, and a remarkable temperature stratification can be observed with very thin thermal boundary. Analytical predictions using the FLUTAN code show a reasonable matching of the measured velocity fields.

  • PDF

CFD ANALYSIS OF TURBULENT JET BEHAVIOR INDUCED BY A STEAM JET DISCHARGED THROUGH A VERTICAL UPWARD SINGLE HOLE IN A SUBCOOLED WATER POOL

  • Kang, Hyung-Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.382-393
    • /
    • 2010
  • Thermal mixing by steam jets in a pool is dominantly influenced by a turbulent water jet generated by the condensing steam jets, and the proper prediction of this turbulent jet behavior is critical for the pool mixing analysis. A turbulent jet flow induced by a steam jet discharged through a vertical upward single hole into a subcooled water pool was subjected to computational fluid dynamics (CFD) analysis. Based on the small-scale test data derived under a horizontal steam discharging condition, this analysis was performed to validate a CFD method of analysis previously developed for condensing jet-induced pool mixing phenomena. In previous validation work, the CFD results and the test data for a limited range of radial and axial directions were compared in terms of profiles of the turbulent jet velocity and temperature. Furthermore, the behavior of the turbulent jet induced by the steam jet through a horizontal single hole in a subcooled water pool failed to show the exact axisymmetric flow pattern with regards to an overall pool mixing, whereas the CFD analysis was done with an axisymmetric grid model. Therefore, another new small-scale test was conducted under a vertical upward steam discharging condition. The purpose of this test was to generate the velocity and temperature profiles of the turbulent jet by expanding the measurement ranges from the jet center to a location at about 5% of $U_m$ and 10 cm to 30 cm from the exit of the discharge nozzle. The results of the new CFD analysis show that the recommended CFD model of the high turbulent intensity of 40% for the turbulent jet and the fine mesh grid model can accurately predict the test results within an error rate of about 10%. In this work, the turbulent jet model, which is used to simply predict the temperature and velocity profiles along the axial and radial directions by means of the empirical correlations and Tollmien's theory was improved on the basis of the new test data. The results validate the CFD model of analysis. Furthermore, the turbulent jet model developed in this study can be used to analyze pool thermal mixing when an ellipsoidal steam jet is discharged under a high steam mass flux in a subcooled water pool.

Combination of Different Numerical Methods for Efficient Thermal Stress Analysis of Casting Process (주조공정에서의 효율적인 열응력 해석을 위한 이종해석기법의 연계)

  • Kwak, Si-Young;Lim, Chae-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1051-1057
    • /
    • 2010
  • This paper proposes a method that involves a combination of FDM and FEM for analyzing casting process. At present, many numerical analysis methods such as FDM, FEM, and BEM are used for solving engineering problems. For a given problem, a specific method that is suited to the problem is adopted; in general, FDM or FVM is favored for problems related to fluid flow or heat transfer, and FEM is adopted in stress analysis. However, there is an increasing need for using a combined method for complex and coupled phenomena analysis. Hence, we proposed a method in which FDM and FEM are coupled in three-dimensional space, and we applied this method to analyze casting process. In the proposed method, solidification and heat transfer was analyzed by using FDM. The field data such as temperature distribution were converted into a format suitable for FEM analysis that was used for calculating thermal stress distribution. Using the proposed method, we efficiently analyzed the analysis process from the viewpoints of work and time.

A simple approach to simulate the size distribution of suspended sediment (부유사 입경분포 모의를 위한 간편법)

  • Kwon, Minhyuck;Byun, Jisun;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.347-357
    • /
    • 2024
  • Numerous prior studies have delineated the size distribution of noncohesive sediment in suspension, focusing on mean size and standard deviation. However, suspensions comprise a heterogeneous mixture of sediment particles of varying sizes. The transport dynamics of suspended sediment in turbulent flow are intimately tied to settling velocities calculated based on size and density. Consequently, understanding the grain size distribution becomes paramount in comprehending sediment transport phenomena for noncohesive sediment. This study aims to introduce a straightforward modeling approach for simulating the grain size distribution of suspended sediment amidst turbulence. Leveraging insights into the contrast between cohesive and noncohesive sediment, we have meticulously revised a stochastic flocculation model originally designed for cohesive sediment to aptly simulate the grain size distribution of noncohesive sediment in suspension. The efficacy of our approach is corroborated through a meticulous comparison between experimental data and the grain size distribution simulated by our newly proposed model. Through numerical simulations, we unveil that the modulation of grain size distribution of suspended sediment is contingent upon the sediment transport capacity of the carrier fluid. Hence, we deduce that our simplified approach to simulating the grain size distribution of suspended sediment, integrated with a sediment transport model, serves as a robust framework for elucidating the pivotal bulk properties of sediment transport.

The Effect of the Surfactant on the Migration and Distribution of Immiscible Fluids in Pore Network (계면활성제가 공극 구조 내 비혼성 유체의 거동과 분포에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-Ok;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.105-115
    • /
    • 2021
  • The geological CO2 sequestration in underground geological formation such as deep saline aquifers and depleted hydrocarbon reservoirs is one of the most promising options for reducing the atmospheric CO2 emissions. The process in geological CO2 sequestration involves injection of supercritical CO2 (scCO2) into porous media saturated with pore water and initiates CO2 flooding with immiscible displacement. The CO2 migration and distribution, and, consequently, the displacement efficiency is governed by the interaction of fluids. Especially, the viscous force and capillary force are controlled by geological formation conditions and injection conditions. This study aimed to estimate the effects of surfactant on interfacial tension between the immiscible fluids, scCO2 and porewater, under high pressure and high temperature conditions by using a pair of proxy fluids under standard conditions through pendant drop method. It also aimed to observe migration and distribution patterns of the immiscible fluids and estimate the effects of surfactant concentrations on the displacement efficiency of scCO2. Micromodel experiments were conducted by applying n-hexane and deionized water as proxy fluids for scCO2 and porewater. In order to quantitatively analyze the immiscible displacement phenomena by n-hexane injection in pore network, the images of migration and distribution pattern of the two fluids are acquired through a imaging system. The experimental results revealed that the addition of surfactants sharply reduces the interfacial tension between hexane and deionized water at low concentrations and approaches a constant value as the concentration increases. Also it was found that, by directly affecting the flow path of the flooding fluid at the pore scale in the porous medium, the surfactant showed the identical effect on the displacement efficiency of n-hexane at equilibrium state. The experimental observation results could provide important fundamental information on immiscible displacement of fluids in porous media and suggest the potential to improve the displacement efficiency of scCO2 by using surfactants.