• Title/Summary/Keyword: Fluid field

Search Result 2,246, Processing Time 0.03 seconds

Numerical Examinations of Damage Process on the Chuteway Slabs of Spillway under Various Flow Conditions (여수로 방류에 따른 여수로 바닥슬래브의 손상 발생원인 수치모의 검토)

  • Yoo, Hyung Ju;Shin, Dong-Hoon;Kim, Dong Hyun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate variability increased, the damage of aging chuteway slabs of spillway are on the rise. Accordingly, a wide array of field survey, hydraulic experiment and numerical simulation have been conducted to find the cause of damage on chuteway slabs. However, these studies generally reviewed the flow characteristics and distribution of pressure on chuteway slabs. Therefore the derivation of damage on chuteway slabs was relatively insufficient in the literature. In this study, the cavitation erosion and hydraulic jacking were assumed to be the causes of damage on chuteway slabs, and the phenomena were reproduced using 3D numerical models, FLOW-3D and COMSOL Multiphysics. In addition, the cavitation index was calculated and the von Mises stress by uplift pressure distribution was compared with tensile and bending strength of concrete to evaluate the possibility of cavitation erosion and hydraulic jacking. As a result of numerical simulation on cavitation erosion and hydraulic jacking under various flow conditions with complete opening gate, the cavitation index in the downstream of spillway was less than 0.3, and the von Mises stress on concrete was 4.6 to 5.0 MPa. When von Mises stress was compared with tensile and bending strength of concrete, the fatigue failure caused by continuous pressure fluctuation occurred on chuteway slabs. Therefore, the cavitation erosion and hydraulic jacking caused by high speed flow were one of the main causes of damage to the chuteway slabs in spillway. However, this study has limitations in that the various shape conditions of damage(cavity and crack) and flow conditions were not considered and Fluid-Structure Interaction (FSI) was not simulated. If these limitations are supplemented and reviewed, it is expected to derive more efficient utilization of the maintenance plan on spillway in the future.

Sr, Nd and Pb isotopic investigations of ultramafic xenoliths and their host basalts from Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea: Implications for a large-scale difference in the source mantle beneath East Asia

  • Park, Seong-Hee;Kwon, Sung-Tack;Hee Sagong;Cheong, Chang-Sik
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.75-75
    • /
    • 2001
  • We report Sr, Nd and Pb isotope data of clinopyroxene separates from ultramafic xenoliths and their host basaltic rocks in Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea. The isotopic data of the xenoliths and host basalts are distinctly different from those of Korean basement rocks. Except for two xenoliths from Ganseong, all samples in this study have isotopic ratios within the combined range of MORB-OIB data. All basaltic rocks have Nd-Sr-Pb isotope compositions different from those of xenoliths, indicating that the host basaltic magma did not derive from the lithospheric mantle where the xenoliths originated. The range of isotopic composition of xenoliths is much greater than that observed in host basalts, which reflects small-scale heterogeneity of the lithospheric mantle. The greater isotopic heterogeneity of the lithospheric mantle probably reflects its long-term stability. The spinel peridotite xenolith data of Jeju Island, Baekryeong Island and Boeun display mixing hyperbolas between DMM and EM II end members. Since Jeju basalts have EM II-like isotopic signature, the mixing relationship shown by the isotopic data of the Jeju xenoliths can be interpreted as the result of infiltration of metasomatic fluid or melt derived from basaltic magma into DMM-like lithospheric mantle. In contrast to other xenolith sites, the Ganseong xenoliths are dominantly clinopyroxene megacryst and pyroxenite. Clinopyroxene megacrysts have different isotopic ratios from their host basalt, reflecting its exotic origin. Two Ganseong xenoliths (wherlite and clinopyroxenite) have much enriched Sr and Nd isotopic ratios and Nd model ages of 2.5-2.9 Ga, and plot in an array away from the MORB-OIB field. The mantle xenoliths from Korean Peninsula have similar $\^$87/Sr/$\^$86/Sr,$\^$143/Nd/$\^$144/Nd and $\^$207/Pb/$\^$204/Pb ratios to, but higher $\^$208/Pb/$\^$204/Pb ratios than, those from eastern China, indicating that Korean xenoliths are derived from the lithospheric mantle with higher Th/U ratio compared with Chinese ones. The isotopic data of xenolith-bearing basalts of Baekryeong Island and Ganseong, along with Ulreung and Dok Islands, show a mixing trend betlveen DMM and EM I in Sr-Nd-Pb isotopic correlation diagrams, which is also observed in tile northeastern Chinese basalts. However, the Jeju volcanic rocks show an EM II signature that is observed in southeastern Chinese basalts. The isotopic variations in volcanic rocks from the northern and southern portions of the East Asia reflect a large-scale isotopic heterogeneity in their source mantle.

  • PDF

Rheology Control of Cement Paste for Applying ECC Produced with Slag Particles to Self-Consolidating and Shotcreting Process (고로슬래그 미분말이 혼입된 자기충전 및 숏크리트용 ECC의 개발을 위한 시멘트풀 레올로지 제어)

  • Park, Seung-Bum;Kim, Jeong-Su;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.67-75
    • /
    • 2008
  • An engineered cementitious composite produced with slag particles (Slag-ECC) had been developed based on micromechanical principle. Base grain ingredients were properly selected, and then the mixture proportion was optimized to be capable of achieving robust tensile ductility in the hardened state. The rheological design is performed in the present study by optimizing the amount of admixtures suitable for self-consolidating casting and shotcreting process in the fresh state. A special focus is placed on the rheological control which is directly applicable to the construction in field, using prepackaged product with all pulverized ingredients. To control the rheological properties of the composite, which possesses different fluid properties to facilitate two types of processing (i.e., self-consolidating and shotcreting processing), the viscosity change of the cement paste suspensions over time was initially investigated, and then the proper dosage of the admixtures in the cement paste was selected. The two types of mixture proportion were then optimized by self-consolidating & shotcreting tests. A series of self-consolidating and shotcreting tests demonstrated excellent self-consolidation property and sprayability of the Slag-ECC. The rheological properties altered through this approach were revealed to be effective in obtaining Slag-ECC hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh Slag-ECC. These ductile composites with self-consolidating and shotcreting processing can be broadly utilized for a variety of applications, e.g., in strengthening seismic resistant structures with congested reinforcements, or in repairing deteriorated infrastructures by shotcreting process.

Dispersal of Hazardous Substance in a City Environment Based on Weather Conditions and Its Risk Assessment at the Pedestrian Level (기상조건에 따른 도시내 위험물질 확산정보와 보행자환경 위험영향평가)

  • Kim, Eun-Ryoung;Lee, Gwang-Jin;Yi, Chaeyeon
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.4
    • /
    • pp.242-256
    • /
    • 2017
  • In this paper, dispersion scenarios concerning various meteorological conditions and real urban structures were made to estimate the impacts of hazardous substance leakage accidents and to reduce damages. Based on the scenario of the hazardous substance dispersion, the characteristics of the risk in the pedestrian environment were analyzed in Gangnam, Seoul. The scenarios are composed of 48 cases according to the meteorological conditions of wind direction and wind speed. In order to analyze the dispersion characteristics of the hazardous substances, simulations were conducted using a computational fluid dynamic (CFD) model with hydrogen fluoride releases. The validation for the simulated wind was conducted at a specific period, and all the calculated verification indices were within the valid range. As a result of simulated dispersion field at pedestrian level, it was found that the dispersion pattern was influenced by the flow, which was affected by the artificial obstacles. Also, in the case of the weakest wind speed of the inflow, the dispersion of the hazardous substance appeared in the direction of the windward side at the pedestrian level due to the reverse flow occurred at lower layers. Through this study, it can be seen that the artificial structures forming the city have a major impact on the flow formed in urban areas. The proposed approach can be used to simulate the dispersion of the hazardous substances and to assess the risk to pedestrians in the industrial complexes dealing with actual hazardous substances in the future.

분포형모델을 이용한 지형특성변화에 따른 유출해석

  • 심창석;이순탁
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.249-254
    • /
    • 2003
  • 분석에 이용된 격자망은 동곡, 고로, 미성, 병천, 효령 및 무성지점에 각각 12개, 30개, 45개, 76개, 46개 및 1265개의 조격자를 구성하였으며 하천의 수로방향 및 경사형태를 세분화하기 위하여 각 지점에 대하여 8개, 24개, 24개, 44개, 12개 및 64개의 세격자로 분할하였다. AGNPS를 이용한 첨두유량의 모의발생 결과치가 동곡, 고로, 미성, 병천, 효령 및 무성지점에서 측정값과 비교하여 각 호우사상별로 상대오차가 1.0~25.0%, 4.0~27.0%, 7.0~29.2%, 2.0~23.9%, 3.0~25.0% 및 3.6~21.0%의 차이를 나타내었다. 분석결과에서 AMCII조건에서는 관측치와 분석결과치가 유사하게 나타났으나 AMCI조건에 대해서는 상대적으로 작은 값을 보였으며 AMCIII조건에서는 다소 큰 값으로 분석되었다. SCS방법에서 제안하는 AMC조건별 CN값을 우리 실정에 적합하도록 수정 보완하기 위한 수정 유출곡선지수 $CN_{m}$ /I과 $CN_{m}$/III을 재구성하였으며, 여기에 적용되는 수정 유출 곡선지수식의 계수 a를 추정한 결과, 기왕에 발표된 연구결과와 거의 일치된 경향을 나타내었다. 제안된 수정 CN식을 이용하여 산정한 결과치와 관측치는 거의 유사하게 나타났다. AGNPS모델에 의한 유출량 산정에 있어 수문학적 토양피복형수(CN)의 결정을 위하여 선행강우량과 토양의 공극율 및 지형인자인 각 셀마다의 유역경사를 이용하여 관계식(CN =f($X_1$, $X_2$, $X_3$))을 유도하였으며, 분석 결과에서 CN이 선행강우량과 가장 밀접한 관계가 있음을 알 수 있었으며 유역경사, 토양의 공극율 순으로 나타났다..88mg/$\ell$~의 범위로 나타났다. 무태교 지점에서의 총인의 농도는 0.52mg/$\ell$~0.99mg/$\ell$~의 범위이었다. 신천에 금호강물을 혼합한 이후에도 부유물질, 생화학적산소요구량, 암모니아태 질소, 총인 등의 농도가 개선되지 않았다. 즉 금호강물의 혼합은 신천수질환경사업소에서 배출되는 방류수에 함유되어 있을 2차 오염물질의 희석이라는 이점외의 수질개선효과는 확인되지 않았다.l years and a new type of transfer crane has been developed. Design concepts and control methods of a new crane will be introduced in this paper.and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basis of the simplified model, the simulation was performed and the results co

  • PDF

키토산 분자량 변화에 따른 수중의 여러 중금속들의 제거에 관한 연구

  • 이승원;김동석
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.292-296
    • /
    • 2003
  • Autoclaving처리를 하지 않은 키토산과 autoclaving처리한 키토산과의 중금속 흡착실험을 해 본 결과 다음과 같은 결과를 도출 할 수 있었다. 1) 먼저 중금속간의 흡착능을 고찰하기 위하여 Langmuir와 Freundlich 흉착등온식에 적용시켜 본 결과 Freundlich 흡착등온식 보다는 Langmuir 흡착등온식이 보다 적합한 것으로 나타났다. 2) 시간에 따라서 autoclaving 처리한 키토산의 중금속 제거 가능성과 그 효율을 검토하기 위하여 각 중금속간의 Langmuir 흡착등온식을 이용하여 $q_{max}$를 나타냈다. 15 min > 60 min > 0 min 순으로 모든 중금속 제거 실험에서 15 min 동안 autoclaving 처리한 키토산의 중금속 흡착량이 가장 높은 것으로 나왔다. 그러므로 기존의 키토산 보다는 15 min동안 autoclaving 처리한 키토산이 중금속 제거에 더 좋은 흡착제로써 역할을 할 수 있을 것으로 판단된다. 3) 키토산을 이용한 중금속 제거에서는 $Pb^{2+}$ > $Cd^{2+}$ > $Cu^{2+}$ > $Cr^{3+}$순서로 제거가 되었다. 여러 연구자들의 실험 결과를 종합해 볼 때 Pb$^{2+}$가 중금속 중에 제거가 잘 된다는 연구 결과가 많이 발표 되었으며, $Cd^{2+}$, $Cu^{2+}$, $Cr^{3+}$의 경우에는 흡착제의 종류에 따라서 제거되는 순서가 다르다는 연구 결과들이 보고 되고 있다. 그러나 어떠한 이유로 중금속의 제거에 차이가 있는지에 대해서는 명확한 결론이 내려져 있지 않는 실정이다. 이러한 중금속간의 경쟁적인 관계에 대해 더 많은 세밀한 연구가 이루어져야 할 것 같다.는 0.52mg/$\ell$~0.99mg/$\ell$~의 범위이었다. 신천에 금호강물을 혼합한 이후에도 부유물질, 생화학적산소요구량, 암모니아태 질소, 총인 등의 농도가 개선되지 않았다. 즉 금호강물의 혼합은 신천수질환경사업소에서 배출되는 방류수에 함유되어 있을 2차 오염물질의 희석이라는 이점외의 수질개선효과는 확인되지 않았다.l years and a new type of transfer crane has been developed. Design concepts and control methods of a new crane will be introduced in this paper.and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basis of the simplified model, the simulation was performed and the results could be confirmed by the experiments under various conditions.뢰, 결속 등 다차원의 개념에 대한 심도 깊은 연구와 최근 제기되고 있는 이론

  • PDF

Onset of Natural Convection in Transient Hot Wire Device for Measuring Thermal Conductivity of Nanofluids (비정상열선법을 이용한 나노유체 열전도도 측정 시 자연대류 개시점에 대한 연구)

  • Lee, Seung-Hyun;Kim, Hyun-Jin;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.279-285
    • /
    • 2011
  • We perform a numerical study to determine the time of onset of natural convection in a transient hot wire (THW) device for measuring the thermal conductivity of nanofluids. The samples used in this simulation are water-based $Al_2O_3$ nanofluids with volume fractions of 1%, 4%, and 10%, and the properties are calculated by theoretical models and experimental correlations. The THW apparatus using coated wire is modeled by the control-volume-based finite difference method, and the start of natural convection is determined by observing the temperature rise of the wire under a gravity field. The onset time is 11.5 s for water and 41.6 s for water-based $Al_2O_3$ nanofluids predicted by Maxwell thermal conductivity model with a 10% volume fraction. We confirm that the onset time of natural convection of nanofluids in the cylinder increases with the nanoparticle volume fraction. We suggest a correlation for predicting the onset time on the basis of the numerical results. Finally, it is shown that the measurement error due to natural convection is negligible if the measurement using the transient hot wire method is completed before the onset of natural convection in the base fluid.

Palaeomagnetism of Cretaceous Rocks in the Ǔisǒng Area, Kyǒngsang Basin, Korea (의성지역 백악기 암석에 대한 고자기 연구)

  • Kim, In-Soo;Lee, Hyun Koo;Yun, Hyesu;Kang, Hee-Cheol
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.403-420
    • /
    • 1993
  • The Cretaceous Kyongsang Basin is known to be composed of several tectonic blocks (or subbasins) with each distinct stratigraphic succession. The study area represents a major part of one of these blocks, i. e. the $\check{U}is\check{o}ng$ block. The area is charaterized by a suite of WNW-trending sinistral strike-slip faults as well as a number of ring faults. A total of 292 independently oriented core samples were drilled from 23 sites, covering virtually all the formations of the Cretaceous $Ky\check{o}ngsang$ Supergroup. Alternating field and thermal demagnetization experiments were conducted to reveal the primary magnetization. Due to the homoclinal nature of the strata in the area, it was not possible to make use of the conventional fold test It is, however, believed that the primary remanent components have been obtained from the majority of the formations, considering the similarity of the palaeomagnetic pole positions with those of contemporary strata of other blocks and the existence of antiparallel reversed remanence. It was found neither any significant difference in magnetic declination on each side of the strike-slip faults nor systematic change of magnetic declination with distance from the fault-line. This does not support such a block rotation hypothesis associated with the strike-slip faulting in the area as alleged by some authors. The samples from the outcrops on or near the fault-lines were severely overprinted by the recent magnetic fields regardless of age and lithology. Epithermal Au-Ag-Cu-Pb-Zn mineralizations are known along some fault lines in the area. It is interpreted that these two facts are closely related with fluid circulations along the fracture zones caused by fault activities. In regard to the age of the strata as deduced from the magnetostratigraphic consideration, the $Ch\check{o}mgok$ formation and the lower strata should be older than Barremian or 124 Ma. The age of volcanics of the $Yuch^{\prime}\check{o}n$ Group sampled in this study should be younger than Campanian or 83 Ma.

  • PDF

Field Survey and Analysis of Natural Ventilation Characteristics of Multi-span Greenhouse with Different Roof Vent (연동형 비닐하우스의 환기창 형태 조사 및 자연환기 효과 분석)

  • Park, Min jung;Choi, Duck kyu;Son, Jin kwan;Yoon, Sung-Wook;Kim, Hee tae;Lee, Seung-Kee;Kang, Dong hyeon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2020
  • The objectives of this study were to investigate the standard and roof vent type of multi-span greenhouse and to analyze the characteristics of natural ventilation of multi-span greenhouse with different roof vent using computational fluid dynamics (CFD) code. The vent area proportion of surveyed farms averaged 10%, it was analyzed that the vent design for natural ventilation is insufficient. The results of natural ventilation efficiency of multi-span greenhouse according to roof vent type showed that the temperature of the position in which the crops grew was the lowest in the conical roof vent type and the highest in the half conical roof vent type. For the natural ventilation effect, the conical roof vent type was the best one, but the structural stability should be evaluated in light of wind load.

Analysis on Temperature Distribution and Current-Carrying Capacity of GIL Filled with Fluoronitriles-CO2 Gas Mixture

  • Chen, Geng;Tu, Youping;Wang, Cong;Cheng, Yi;Jiang, Han;Zhou, Hongyang;Jin, Hua
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2402-2411
    • /
    • 2018
  • Fluoronitriles-$CO_2$ gas mixtures are promising alternatives to $SF_6$ in environmentally-friendly gas-insulated transmission lines (GILs). Insulating gas heat transfer characteristics are of major significance for the current-carrying capacity design and operational state monitoring of GILs. In this paper, a three-dimensional calculation model was established for a GIL using the thermal-fluid coupled finite element method. The calculated results showed close agreement with experimentally measured data. The temperature distribution of a GIL filled with the Fluoronitriles-$CO_2$ mixture was obtained and compared with those of GILs filled with $CO_2$ and $SF_6$. Furthermore, the effects of the mixture ratio of the component gases and the gas pressure on the temperature rise and current-carrying capacity of the GIL were analyzed. Results indicated that the heat transfer performance of the Fluoronitriles-$CO_2$ gas mixture was better than that of $CO_2$ but worse than that of $SF_6$. When compared with $SF_6$, use of the Fluoronitriles-$CO_2$ gas mixture caused a reduction in the GIL's current-carrying capacity. In addition, increasing the Fluoronitriles gas component ratio or increasing the pressure of the insulating gas mixture could improve the heat dissipation and current-carrying capacity of the GIL. These research results can be used to design environmentally-friendly GILs containing Fluoronitriles-$CO_2$ gas mixtures.