• 제목/요약/키워드: Fluid Transport

검색결과 570건 처리시간 0.026초

Contribution of Bulk Flow to Transport Mechanisms of the Membranes Surrounding Amniotic Fluid in the Rabbit

  • Lim, Young-Cheol;Lee, Sang-Jin;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • 제28권1호
    • /
    • pp.79-90
    • /
    • 1994
  • The objective of the present study is to assess the contribution of bulk flow to the regulatory mechanism of amniotic fluid volume and its ionic concentration in the membranes surrounding the amniotic fluid. For quantitative assessment, we prepared 4 kinds of artificial amniotic fIuids (isotonic isovolumetric, hypotonic isovolumetric, isotonic hypervolumetric and hypotonic hypervolumetric ones) by replacing 70% of amniotic fluid of pregnant rabbits with water or normal Tyrode solutions. Isoosmotic saline of 0.5 ml volume containing 0.05% Censored and 15 mM/l LiCl was administered initially into amniotic sacs of all subject animals. Samples of amniotic fluid were collected in after 30 and 90 minute intervals; the concentrations of Censored, $Na^+\;and\;Li^+$ were determined and compared. Followings are the results obtained. 1. from isovolumetric and increased Congcord group, we couldn't find significant change in $Li^+\;and\;Na^+$ concentration in isotonic amniotic fluid. However, $Na^+$ concentration increased significantly as well as a striking increase in Censored concentration in hypotonic amniotic fluid. 2. In isovoIumetric and decreased Censored group, the rate of $[Li^+]$ decrement and the rate of $[Na^+]$ increment were much higher in hypotonic amniotic fluid than in isotonic. 3. In hypervolumetric and increased Censored group, the rate of $Na^+$ efflux increased proportionately with the increment of Censored concentration up to 0.98, which was higher than the rate of $Li^+$ efflux in isotonic amniotic fluid. However, the increment of $Na^+$ concentration was rather related with the initial $Na^+$ concentration in hypotonic amniotic fluid, showing inverse relationship. $Li^+$ concentration increased only when there was a marked increase in Censored concentration and approached near a maximum value or 1. 4. For hypervolumetric and decreased Censored group, the observations were identical to isovolumetric and decreased Censored group. From these results the following conclusions could be made: 1) There is no net movement of water or monovalent cations across the membranes surrounding amniotic fIuid in isotonic isovolumetric condition. In contrast, there is a net efflux of amniotic fluid by osmotic bulk flow, resulting in elevation of $Na^+$ concentration in hypotonic isovolumetric condition. 2) In hypervolumetric conditions, there is a massive efflux of amniotic fluid or solvent drag through the surrounding membranes by fiItrative bulk flow, where the rate of $Na^+$ efflux has a linear relationship with that of water efflux. This is assumed to be carried out through enlarged and newly opened intercellular spaces resulting from increased intraamniotic pressure. 3) Once increasing intraamniotic pressure reaches a point allowing $Li^+$ to pass through during osmotic bulk flow in hypotonic amniotic fIuid, $Na^+$ influx seems to occur by diffusion simultaneously or immediately thereafter, too.

  • PDF

콘크리트 표면의 유체이동특성과 최소피복두께 결정을 위한 제안 (Fluid Transport Properties of Skin Concrete and New Suggestion to Determine Minimum Cover Concrete)

  • 이창수;윤인석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.543-546
    • /
    • 2002
  • This paper discussed micro - structure of skin concrete to understand transport properties from surface and seek thickness from surface which is seriously influenced on durability. Concrete at nearer surface has high porosity relative to inner concrete. The porosity of concrete and ISAT value at region from surface to 20 mm depth is decreased with depth. On the other hand, according to the result of ASTM C 1202 with specimen thickness, critical depth which affects fast ionic penetration through interfacial transition zone (ITZ) equals 35mm and the critical depth would be directly influenced by the effects of ITZ on chloride diffusion unrelated with W/C ratio.

  • PDF

촉매 활성층 두께 제어를 통한 연료전지 성능 해석 (Performance Analysis of Fuel Cell by Controlling Active Layer Thickness of Catalyst)

  • 김홍건
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.133-140
    • /
    • 2007
  • A 2-D model of fluid flow, mass transport and electrochemistry is analysed to examine the effect of current density at the current collector depending on active layer thickness of catlyst in polymer elecrolyte fuel cells. The finite element method is used to solve the continuity, potential and Maxwell-Stefan equations in the flow channel and gas diffusion electrode regions. For the material behavior of electrode reactions in the active catalyst layers, the agglomerate model is implemented to solve the diffusion-reaction problem. The calculated model results are described and compared with the different thickness of active catalyst layers. The significance of the results is discussed in the viewpoint of the current collecting capabilities as well as mass transportation phenomena, which is inferred that the mass transport of reactants dictates the efficiency of the electrode in the present analysis.

Numerical Analysis of Impurity Transport Along Magnetic Field Lines in Tokamak Scrape-011 Layer

  • Chung, Tae-Kyun;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.17-25
    • /
    • 1998
  • Transport of carbon and boron impurity ions parallel to magnetic field lines in the tokamak SOL (scrape-off layer) is numerically investigated for a one-dimensional steady state. The spatial distributions of density and velocity of the impurity ions in a steady state are calculated by finite difference method for a single-fluid model. The calculated results show that among forces acting on SOL particles thermal force produced tv plasma temperature gradient is a principal force determining the feature of impurity distribution profiles in the tokamak edge. However, strong collisional friction forces appearing dominant in front of the diverter plate restrain impurity ion flows due to temperature gradients from moving toward the midplane. Consequently, the stagnation point develops in the impurity flow by these two forces near the diverter region, in which ion flows change their directions. Impurity ions turn out to be accumulated at the stagnation points, where peaked profiles of highly-ionized state ions are relatively predominant over those of low-ionized state ions.

  • PDF

Convective heat and mass transfer affected by aspect ratios for physical vapor transport crystal growth in two dimensional rectangular enclosures

  • Kim, Geug Tae;Kwon, Moo Hyun
    • 한국결정성장학회지
    • /
    • 제28권2호
    • /
    • pp.63-68
    • /
    • 2018
  • Natural convection of a two dimensional laminar steady-state incompressible fluid flow in a rectangular enclosure has been investigated numerically for low aspect ratios with the physical vapor transport crystal growth. Results show that for aspect ratio (Ar = L/H) range of $0.1{\leq}Ar{\leq}1.5$, with the increase in Grashof number by one order of magnitude, the total mass flux is much augmented, and is exponentially decayed with the aspect ratio. Velocity and temperature profiles are presented at the mid-width of the rectangular enclosure. It is found that the effect of Grashof number on mass transfer is less significant when the enclosure is shallow (Ar = 0.1) and the influence of aspect ratio is stranger when the enclosure is tall and the Grashof number is high. Therefore, the convective phenomena are greatly affected by the variation of aspect ratios.

Modeling Heterogeneous Wall Nucleation in Flashing Flow of Initially Subcooled Water

  • Park, Jong-Woon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.241-246
    • /
    • 1996
  • An analytical model to calculate rate of vapor generation due to heterogeneous wall nucleation in flashing flow is developed. In the present model, an important parameter of the vapor generation term, i.e. nucleation site density is calculated by integrating its probability distribution function with respect to active cavity radius. The limits of integration are minimum and maximum active cavity radii, and these are formulated using an active cavity model for nucleate boiling. This formulation, therefore. can statistically account for the effect of surface specific thermo-physical and geometric conditions on the vapor generation rate and flashing inception. For verifying the adequacy of the present model, steady state two-fluid and the bubble transport equations are solved with applicable constitutive equations. The applicable region of the bubble transport equation is also extended to churn-turbulent flow regime to predict interfacial area concentration at high void fraction. Predicted results in terms of axial pressure and void fraction profiles along the channels are compared with experimental data of Super Moby Dick and BNL Reasonable agreements have been achieved and this shows the applicability of the present model to flashing flow analysis.

  • PDF

Electro-osmotic pump in osteo-articular tissue engineering: A feasibility study

  • Lemonnier, Sarah;Naili, Salah;Lemaire, Thibault
    • Advances in biomechanics and applications
    • /
    • 제1권4호
    • /
    • pp.227-237
    • /
    • 2014
  • The in vitro construction of osteo-articular large implants combining biomaterials and cells is of great interest since these tissues have limited regeneration capability. But the development of such organoids is particularly challenging, especially in the later time of the culture, when the extracellular matrix has almost filled the initial porous network. The fluid flow needed to efficiently perfuse the sample can then not be achieved using only the hydraulic driving force. In this paper, we investigate the interest of using an electric field to promote mass transport through the scaffold at the late stage of the culture. Based on the resolution of the electrokinetics equations, this study provides an estimation of the necessary electric driving force to reach a sufficient oxygen perfusion through the sample, thus analyzing the feasibility of this concept. The possible consequences of such electric fields on cellular activities are then discussed.

수평형 MOCVD 반응기 내의 InP 필름성장 제어인자에 대한 영향 평가 (Onset on the Rate Limiting Factors of InP Film Deposition in Horizontal MOCVD Reactor)

  • 임익태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.73-78
    • /
    • 2003
  • The InP thin films grown by metalorganic chemical vapor deposition (MOCVD) are widely used to optoelectronic devices such as laser diodes, wave-guides and optical modulators. Effects of various parameters controlling film growth rate such as gas-phase reaction rate constant, surface reaction rate constant and mass diffusivity are numerically investigated. Results show that at the upstream region where film growth rate increases with the flow direction, diffusion including thermal diffusion plays an important role. At the downstream region where the growth rate decreases with flow direction, film deposition mechanism is revealed as a mass-transport limited. Mass transport characteristics are also studied using systematic analyses.

  • PDF

Anti-Alzheimer′s drug, taurine transport through the blood-brain barrier in mice and pharmacokinetics

  • Kim, You-Jung;Kang, Young-Sook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.193-194
    • /
    • 1998
  • Recently, evaluation of brain transport of taurine which is possible to effect on Alzheimer's disease has investigated in rats. Also, internal carotid artery perfusion (ICAP) method is very useful for measuring of blood-brain barrier (BBB) permeability in rats. But ICAP has difficulties to evaluate of BBB permeability in mice especially. In the present study examines neuropharmaceutials permeability through the BBB in mice by common carotid artery perfusion (CCAP) method that modify ICAP method and require simple surgery. The external carotid artery (ECA) is cannulated with coagulating pterygopalatine artery (PPA) on ICAP method, while CCA is cannulated without coagulating PPA on CCAP method. The CCAP method require 4-5 fold higher infusion rate than ICAP method because an additional factor of 2 must be incorporated to adjust for fluid loss to the extracerebral circulation.

  • PDF

개질기 혼합영역 형상에 따른 반응물의 혼합도 및 가스상 반응특성에 대한 수치해석적 연구 (Impact of mixer design to reactants mixing characteristics and gas-phase reactions in the mixing region of a hydrocarbon reformer)

  • 김선영;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.99.1-99.1
    • /
    • 2011
  • Reactant mixing has a critical role in ensuring reformate quality and an important design objective is to achieve sufficiently complete mixture of reactants. For that purpose it is required to understand the coupled transport-kinetics phenomena in the mixing region. Three-dimensional computational fluid dynamics model was developed and validated in previous works. The mixing characteristics in various alternatives of a prototype mixing chamber were compared, and then a reduced reaction kinetics was applied to two extreme designs for investigating the impact of gas-phase reactions. Both designs did not reach threshold ethylene mole fraction of 0.001, but surprisingly more ethylene was generated in the design having better mixing characteristics. The presentation will deliver the development process of coupled transport and kinetics model briefly and the detailed information about the mixing characteristics and gas-phase reactions in two mixer designs.

  • PDF