• Title/Summary/Keyword: Fluid Transient Analysis

Search Result 260, Processing Time 0.036 seconds

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.926-936
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Kim, Dong-Hyun;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.367-375
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established. using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

  • PDF

Transient Conjugate Heat Transfer of Turbine Rotor-Stator System

  • Okita, Yoji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.831-838
    • /
    • 2004
  • A fluid-solid conjugate solver has been newly developed and applied to an actual engine disk system. Most of the currently available conjugate solvers lack the special thermal modeling for turbomachinery disk system applications. In the present new code, these special models are implemented to expand the applicability of the conjugate method and to reduce the required computational resources. Most of the conjugate analysis work so far are limited to the axisymmetric framework. However, the actual disk system includes several non-axisymmetric components which inevitably affect the local heat transfer phenomena. Also the previous work devoted to this area usually concentrate their efforts on the steady-state thermal field, although the one in the transient condition is more critical to the engine components. This paper presents full 3D conjugate analysis of a single stage high pressure turbine rotor-stator disk system to assess the three-dimensional effects (Fig. 1). The analysis is carried out not only in the steady-state but also in the engine accelerating transient condition. The predicted temperatures shows good agreement with measured data.

  • PDF

Transient analysis of lubrication with a squeeze film effect due to the loading rate at the interface of a motor operated valve assembly in nuclear power plants

  • Jaehyung Kim;Sang Hyuk Lee;Sang Kyo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2905-2918
    • /
    • 2023
  • The valve assembly used in nuclear power plants is important safety-related equipment. In the new standard, the physical attributes are measured using a valve diagnosis test, which is used in the expansion to other non-tested valves using a quantitative test-basis methodology. With a motor-operated actuator, the state of stem's lubrication is related to physical attributes such as the stem factor and the friction coefficient. This study analyzed the numerical transient of fluid and solid lubrication with a squeeze film effect due to the loading rate on the stem and the stem nut using the experimental data. The differential equation that governs the motion mechanism of the stem and stem nut is established and analyzed. The flow rate, the fluid and the solid contact forces are calculated with the friction coefficient. Finally, we found that a change in the friction coefficient results from a change of the shear force in the solid contact mode during the interchange process between the solid contact mode and the fluid contact mode. The qualitative understanding of the squeeze film effect is expanded quantitatively for forces, thread surface distance, velocity, and acceleration, with consideration of the metal solid contact and fluid contact.

High-fidelity numerical investigation on structural integrity of SFR fuel cladding during design basis events

  • Seo-Yoon Choi;Hyung-Kyu Kim;Min-Seop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.359-374
    • /
    • 2024
  • A high-fidelity numerical analysis methodology was proposed for evaluating the fuel rod cladding integrity of a Prototype Gen IV Sodium Fast Reactor (PGSFR) during normal operation and Design basis events (DBEs). The MARS-LMR code, system transient safety analysis code, was applied to analyze the DBEs. The results of the MARS-LMR code were used as boundary condition for a 3D computational fluid dynamics (CFD) analysis. The peak temperatures considering HCFs satisfied the cladding temperature limit. The temperature and pressure distributions were calculated by ANSYS CFX code, and applied to structural analysis. Structural analysis was performed using ANSYS Mechanical code. The seismic reactivity insertion SSE accident among DBEs had the highest peak cladding temperature and the maximum stress, as the value of 87 MPa. The fuel cladding had over 40 % safety margin, and the strain was below the strain limit. Deformation behavior was elucidated for providing relative coordinate data on each active fuel rod center. Bending deformation resulted in a flower shape, and bowing bundle did not interact with the duct of fuel assemblies. Fuel rod maximum expansion was generated with highest stress. Therefore, it was concluded that the fuel rod cladding of the PGSFR has sufficient structural safety margin during DBEs.

Transient Forces on Pipe Bends by the Propagation of Pressure Wave

  • Woo, Hyo-Seop;Papadakis, C.N.;Kim, Won
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.99-105
    • /
    • 1995
  • External forecs acting on a pipe bend change when a transient pressure wave propagates through the bend. Analytical expressions are derived to compute the changes of these forces which depend mainly on static pressure rather than fluid momentum. This analysis reveals that the change of the vertical component of the force acting on a pipe bend with an angle larger than 90 may reverse in direction during the passage of a pressure wave through the bend.

  • PDF

A Study on the Characteristics of Sound Source of Hydrodynamic Journal Bearings (유체 윤활 저널 베어링의 음원 특성에 관한 연구)

  • Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.333-338
    • /
    • 2002
  • Results of theoretical investigations on acoustical properties of hydrodynamic journal bearings are presented. Nonlinear analysis including rotor imbalance is performed for a rotor-bearing system in order to obtain acoustical properties of hydrodynamic journal bearings. Furthermore, a cavitation algorithm, implementing the Jakobsson-Floberg-Olsson boundary condition, is adopted to predict cavitation regions in a fluid film. Acoustical properties of hydrodynamic journal bearings are identified through frequency analysis of oil pressure fluctuation calculated from the nonlinear transient analysis. The results show that the acoustical frequency spectra of the fluid film are pure tone spectra, containing the frequency of the shaft rotation and its super-harmonics. The analysis also shows that super-harmonics are predominant at the neighborhood of the fluid film reformation and rupture regions.

Performance Analysis of a Micro-Hydro Pelton Turbine for the Osmotic Power Generation (삼투압발전용 마이크로 펠턴터빈의 성능해석)

  • Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.18-22
    • /
    • 2011
  • This paper presents the transient performance analysis of a micro-hydro Pelton turbine for the osmotic power generation using the commercially available computational fluid dynamics (CFD) code, ANSYS CFX. The detailed flow field in the micro Pelton turbine with a single-jet is investigated by the CFD code adopted in the present study. Predicted characteristic curves agree fairly well with measured data for a prototype Pelton turbine over the normal operating conditions. The computational analysis method presented herein can be effectively applied to the hydraulic design optimization process of general purpose Pelton turbine runners.

A Study on the Transient Motion Analysis for the Liquid Balinced Washing Machine (액체밸런서를 고려한 세탁기의 과도응답 특성에 관한 연구)

  • 이동익;오재응
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 1995
  • In order to investigate the effect of liquid balancer in washing machine, we identify the vibration characteristics of suspension system of washing machine and formulate the 4 D. O. F. system dynamic equations. As the washing machine rotates higher speed, it is emphasized to reduce the ecentric force due to unbalanced mass. Nowadays, the most effective cancelling method of eccentric force is known as the usage of liquid balancer. To determine the liquid distribution in liquid balancer, the fluid statics is considered. The system dynamic equations are solved by Runge-Kutta method and represent the good characteristics of real washing machine in X-Y plane. The accuracy of the numerical solution was examined by experiments. The simulation results show that the unbalanced mass has so much influence on vibration magnitude and the rotating shape of spin-basket. But the effect of mass reduction due to the dehydration of the spin-basket has little influence on transient vibration.

Measuring Thermal Conductivity of Nanofluids and Heat Transfer Enhancement (나노유체의 열전도율 측정과 열전달 향상)

  • Lee, Shin-Pyo;Choi, Cheol;Oh, Je-Myung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.147-150
    • /
    • 2006
  • A new class of heat transfer fluid with higher thermal conductivity, called nanofluids has been developed by Dr. S. Choi about decade ago. Many exciting experimental and theoretical results have been reported worldwide to predict the thermal conductivity enhancement of nanofluids, however, they sometimes show excessive large discrepancies between each other. This kind of disagreements in thermal conductivity data is partly ascribable to the accuracy of the measuring apparatus, that is, mostly used THM(transient hot-wire method). New thermal conductivity measuring method whose principle is different from that of conventional THM is proposed in this article and measurements and uncertainty analysis were made for the three nanofluid samples with different particle concentration of pure, 2% and 4% of AlN nanofluids.

  • PDF