• Title/Summary/Keyword: Fluid Noise

Search Result 1,065, Processing Time 0.029 seconds

A Study on Tire Fluid-Structure Interaction Noise (Tire Fluid-Structure Interaction Noise 에 관한 연구)

  • Kim, Gi-Jeon;Bae, Chul-Yong;Lee, Dong-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.204-209
    • /
    • 2004
  • Recently, the various performances of vehicle are rapidly improved. Therefore tire noise is recognized as important noise source because vehicle noise is considerably reduced. This study is performed for the control of the cavity resonance noise that is structure-borne noise, due to fluid(air)-structure interaction. For this investigation, FRF analysis has been carried out using FEM and we found an important factor affecting cavity resonance. The effect of this factor is confirmed by objective noise test. We confirmed that the result of FRF analysis and objective noise test is that the structure control of tire sidewall can reduce cavity resonance noise due to fluid-structure interaction

  • PDF

Study on Vibration Characteristics of Fluid Tank Structure for Ship (유체 탱크 구조물의 접수 진동 특성에 관한 연구)

  • Seo, Myeng-Kab;Seok, Ho-Il;Lee, Chul-Won
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.85-89
    • /
    • 2013
  • In the engine room and the aft body, there are so many fluid tanks such as fresh water tank and oil tank. The vibration analysis for the fluid tank structures has to consider the added mass effect due to the fluid. However, it is known that the result of the fluid tank has the difference according to the boundary condition of the fluid field such as infinite fluid and finite fluid. In this paper, a numerical case study is carried out for the research about the vibration characteristics of the fluid tank with various fluid field. In addition, an experimental study is carried out to verify the validity of the vibration analysis for the fluid tank structure.

  • PDF

Experimental Identification of Fluid Noise and Structure-Borne Noise in Hermetic Scroll Compressor (밀폐형 스크롤 압축기의 유체소음 및 구조기인소음의 실험적 규명)

  • Lee, Jin-Kab
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.687-693
    • /
    • 2000
  • Recently, a scroll compressor is widely used, because a scroll compressor features low noise, due to less pulsation of gas pressure, than that of the rotary compressor. The major source of noise in air-conditioner is a compressor. Therefore, noise reduction in a compressor is quite significant as an element technology in air-conditioner field. For a reduction of noise, the source of noise must be identified. This paper presents detailed analyzes for the major noise source (fluid-borne noise and structure-borne noise) causes in a scroll compressor, which will make possible a low noise and vibration design of a scroll compressor.

A Study on the Radiated Noise the Prediction in the Pipe by Fluid Induced Vibration using the Radiation Efficiency and Pipe Surface Vibration (배관 표면진동과 방사효율을 이용한 배관 소음예측기법 연구)

  • Yi, Jongju;Park, Kyunghoon;Jung, Woojin;Seo, Youngsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.763-769
    • /
    • 2014
  • This study is on the experiment and prediction of the pipe noise due to the internal fluid. The vibration of pipe external surface and noise in air were measured according to the internal fluid velocity and pipe type. In the experiment, the vibration and noise level of the straight pipe and rounded pipes show that the vibration and noise level are almost same. The 900 mitred pipe shows the high vibration and noise level. In the prediction of noise due to the internal flow, the method using the pipe surface vibration and radiation efficiency shows good agreement with experimental result.

A Study on Design of Diffuser Sliencer in Boiler (보일러용 디퓨저 소음기 설계에 관한 연구)

  • 남경훈;박실룡;이덕주;김재욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.271-278
    • /
    • 1997
  • The flow of steam through a safety valve vent pipe system in the boiler has been analyzed to provide a design basis of diffuser silencer for attenuating shock-shell and jet noise. Numerical analysis to estimate inner fluid of silencer and noise propagation outside silencer are performed. The distribution curve of fluid information to provide average values about inner fluid of silencer is presented by theoretical analysis.

  • PDF

Analysis on Performance of Axial Flow Fan for Outdoor Unit of Air-conditioner: Noise Characteristics (에어컨 실외기용 축류홴의 성능에 관한 연구: 소음 특성)

  • Kim, Yong-Hwan;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.29-34
    • /
    • 2010
  • In this paper, aerodynamic noise of axial flow fans for outdoor unit of air-conditioner was analyzed by both experiment and numerical simulation. The three-dimensional incompressible turbulent flow was predicted by the commercial computational fluid dynamics code SC/Tetra, while the aeroacoustic noise of an axial flow fan was predicted by FlowNoise. Computations and experiments were performed with two types of axial flow fans, in which very different noise source distributions were presented. The results obtained from this study are expected to show the way to reduce the noise of axial flow fans in industrial applications.

A Study on the Development of MFI(Multi Fluid Injection) System and its Effect to Reduce the Noise of Subway (도시철도 소음저감을 위한 MFI(Multi Fluid Injection) 시스템 개발 및 효과에 관한 연구)

  • Park, Jong-Hwa;Kim, Dae-Suk;Kim, Hee-Oh;Shim, Jae-Gyu
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.446-454
    • /
    • 2011
  • The noise of the subway has become a social issue and includes very complex reasons. The friction between rail and train wheel is the most important reason of the noise. In this study, we developed MFI(Multi Fluid Injection) System which sprays the mixed fluid(water, anticorrosive and lubricant) on the rail when the train is approaching to reduce the friction. To verify the system's effect, we measured the internal and external noise of the running train. The measured and analyzed results show that MFI system reduce the noise of the running subway.

  • PDF

Study on the Indoor Acoustic Field Analysis using the Blast Wave Model (폭발파 모델을 이용한 실내 음장 해석에 관한 연구)

  • Song, Kee-Hyeok;Kang, Woo-Ram;Lee, Duck-Joo;Kim, Young-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.142-150
    • /
    • 2015
  • A portable recoilless guided missile generates a strong back blast and impulsive noise at the nozzle when it launches. In the case of indoor operations, the hazard of the blast noise from a recoilless weapon increases due to limited indoor spaces. Also, the noise levels determine the operational feasibility of a weapon; therefore, it is important to predict the blast noise levels distribution in the indoor space in advance. In addition, computational fluid dynamics (CFD) method generally used for fluid related simulations, requires high computing cost and time to simulate the whole domains. The domain includes both blast wave region and large and various indoor space region. Therefore, an efficient method for predicting the far-field noise level within a short time should be developed. This paper describes an analysis model for predicting the indoor noise distributions by considering the shape effect of the building within a short time. A new developed blast wave model was implemented using the noise source. Additionally, noise reflections at the closed surfaces such as walls and noise transmissions at the opened surfaces such as windows and doors were considered in calculating the noise levels. The predicted noise levels were compared with the experimental data obtained from the indoor launch test to validate the reliability of program.

Performance of Squeeze Film Damper Using Magneto-Rheological Fluid (MR유체를 이용한 스퀴즈필름 댐퍼의 응답특성)

  • 안영공;양보석;신동춘;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.67-70
    • /
    • 2002
  • This paper presents the property of the Squeeze Film Damper (SFD) using Magneto-Rheological fluid (MR fluid). The damping property of a SFD for a flexible rotor system varied according to vibration mode. MR fluid is known as a functional fluid with controllable apparent viscosity of the fluid by applied magnetic field strength. When the MR fluid is applied in the SFD, the SFD using MR fluid can effectively reduce vibrations of the flexible rotor in a wide range of rotating speed by control of the applied magnetic field strength. To investigate in detail the SFD using MR fluid, the SFD to support one mass was constructed and its performance was experimentally investigated in the present study. The damping property of the SFD using MR fluid has viscous damping by Newtonian fluid, but not Coulomb friction by Bingham fluid. Therefore, The system damped by the SFD can be considered as a linear system.

  • PDF

Noise Analysis of Discharge Valve in a Linear Compressor Considering Fluid-valve-piston Interactions (유체-밸브-피스톤 연성을 고려한 선형압축기 토출 밸브의 소음 해석)

  • Lee, Jun-Ho;Jeong, Weui-Bong;Han, Hyung-Suk;Lee, Hyo-Jae;Jeong, Sang-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1237-1243
    • /
    • 2009
  • A computational procedure to estimate the noise radiated from a discharge valve system in a linear compressor was discussed and established. This procedure was composed of three steps. As the first step, the dynamic behavior of the valve system was estimated taking into consideration of fluid-valve-piston interactions. As the second step, the flow characteristics of refrigerant in the discharge valve system were estimated through computational fluid dynamics applying the behaviors of the valves as moving boundary conditions. The variations of pressures and velocities of fluid were converted to quadrupole noise sources. As the final step, the boundary element method based on Helmholtz equation was applied to predict the radiated acoustic pressure. The computational results by the presented procedure were experimentally validated.