• Title/Summary/Keyword: Fluid Dynamics Analysis

Search Result 1,762, Processing Time 0.031 seconds

CFD - Mature Technology?

  • Kwak, Do-Chan
    • Proceedings of the KSME Conference
    • /
    • 2005.11a
    • /
    • pp.257-261
    • /
    • 2005
  • Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This Is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.

  • PDF

Computational analysis of coupled fluid-structure for a rotor blade in hover (정지 비행하는 로터 블레이드의 전산 유체-구조 결합 해석)

  • Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1139-1145
    • /
    • 2008
  • numerical study on the coupled fluid-structure for a rotor blade in hover was conducted. Computational fluid dynamics code with enhanced wake-capturing capability is coupled with a simple structural dynamics code based on Euler-Bernoulli's beam equation. The numerical results show a reasonable blade structural deformation and aerodynamic characteristics.

Wind Load Induced Vibration Analysis for Tall Structure (고층건물의 풍하중 유발 진동해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Kim, Yo-Han;Kim, Dong-Man;Kim, Jong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.658-659
    • /
    • 2009
  • In this study, fluid-induced vibration (FIV) analyses have been conducted for tall building structure. In order to investigate the aeroelastic responses of tall building due to wind load, advanced computational analysis system based n computational fluid dynamics(CFD) and computational structural dynamics (CSD) has been developed. Fluid domains are modeled using the computational grid system with local grid deforming technique. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of tall structure for fluid-structure interaction (FSI) problems. Detailed aeroelastic responses and results are presented to show the physical phenomenon of the tall building.

  • PDF

Vibration Analysis of the Pipeline with Internal Unsteady Fluid Flow by Using Spectral Element Method (스펙트럴요소법을 이용한 내부 비정상류를 갖는 파이프에 대한 진동해석)

  • Seo, Bo-Sung;Cho, Joo-Yong;Lee, U-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.387-393
    • /
    • 2006
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid flow. The spectral element matrix is formulated by using the exact frequency-domain solutions of the pipe-dynamics equations. The spectral element dynamic analysis is then conducted to evaluate the accuracy of the present spectral element model and to investigate the vibration characteristics and internal fluid characteristics of an example pipeline system.

A Study on the Development of Measurement System for Fluid Volume and Flow Rate (유체의 유량 및 유속 측정 시스템 개발에 관한 연구)

  • Lee, Seok-Won;Lee, Tea-Jin;Nam, Yun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2492-2494
    • /
    • 2003
  • Urine analysis is one of the most important medical examination in the hospital. Not only the data for the ingredients of urine through chemical analysis, but also the data related to fluid dynamics, e.g., peak flow rate, average flow rate, may provide some useful information about patient's state of health. Therefore, we develop the portable system to measure and analyse fluid volume/flow rate in this study. This system can store and print the measured data during the pre-specified time interval, and provide some meaningful data related with fluid dynamics. We explain the method and the technical stuff to implement the system, and show the result.

  • PDF

Nonlinear Characteristics of Low-speed Flow Induced Vibration for the Safety Design of Micro Air Vehicle

  • Chang, Tae-Jin;Kim, Dong-Hyun;Lee, In
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.873-881
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of an equivalent airfoil system of MAV have been investigated in low Reynolds number flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-Stokes equations. The present fluid/structure interaction analysis is based on one of the most accurate computational approach with computational fluid dynamics (CFD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed for the low Reynolds region that has a dominancy of flow viscosity. The effects of Reynolds number and initial angle of attack on the fluid/structure coupled vibration instability are shown and the qualitative trend of FIV phenomenon is investigated.

Analysis of Fluid Flows in a Stirred Tank Using Computational Fluid Dynamics (전산유체역학을 이용한 교반탱크 내 유체흐름 해석)

  • Kim, Mi Jin;Lee, Kyung Mi;Park, Kyun Young
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.337-341
    • /
    • 2010
  • The flow patterns in a stirred tank, 1m in diameter and 1 m in height, were studied using CFX, a commercial computational fluid dynamics program, with the impeller rotation speed, the impeller blade angle and the tank-bottom shape varied and the baffles included or excluded. A vortex was observed in the center of the tank in the absence of the baffles, and the intensity of the vortex increased with increasing the rotation speed. The vortex was considerably reduced in the presence of the baffles. An increase in the blade angle increased the vertical flow and decreased the vortex intensity. The flow in the corners of the tank bottom turned smoother as the tank bottom was varied in shape from flat to round.

A Flow Analysis of Small Craft by Using CFD

  • Park, Ji-Yong;Jeong, Jin-Hee;Hwang, Tea-Wook;Lee, Sol-Ah;Kim, Kyung-Sung
    • Journal of Multimedia Information System
    • /
    • v.7 no.4
    • /
    • pp.269-276
    • /
    • 2020
  • The small craft including jet-board for leisure are commonly smaller than the general commercial vessels. For the floating vessel, the motion analysis is significantly important component to design the shape. It is, however, hardly predicting its behavior by using conventional boundary element method due to violating small amplitude assumption for potential theory. The computational fluid dynamics method can afford to simulate such small craft, but its grid system was not able to calculate motion, because movable body disturbs the grid system by confliction. The dynamics fluid body interaction model with over-set mesh system can be dealt with movable floating body under irregular ocean wave. In this study, several cases were considered to reveal that DFBI is essential method to predict floating body motion. The single phase simulate was conducted to establish the shape perfection, and then the validated vessel was simulated with ocean waves weather DFBI option on or off. Through the comparison, the results between the cases of DFBI on and off shows significantly difference. It was claimed that the DFBI was necessary not only to calculation body motion, but also to predict accurate drag and lift force on the floating body for small size craft.

Application of Computational Fluid Dynamics to Development of Combustion Devices for Liquid-Propellant Rocket Engines (액체추진제 로켓 엔진 연소장치 개발에 있어서의 전산유체역학 응용)

  • Joh, Miok;Kim, Seong-Ku;Han, Sang Hoon;Choi, Hwan Seok
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.150-159
    • /
    • 2014
  • This study provides a brief introduction to application of the computational fluid dynamics to domestic development of combustion devices for liquid-propellant rocket engines. Multi-dimensional flow analysis can provide information on the flow uniformity and pressure loss inside the propellent manifold, from which the design selection can be performed during the conceptual design phase. Multi-disciplinary performance analysis of the thurst chamber can also provide key information on performance-related design issues such as fuel film cooling and thermal barrier coating conditions. Further efforts should be made to develop numerical models to resolve the mixing and combustion characteristics of LOX/kerosene near the injection face plate.

An Analytical Study on Evaluation of Opening Performance of Steam Safety Valve for Nuclear Power Plant (원자력 증기용 안전밸브의 개방성능 평가를 위한 해석적 연구)

  • Sohn, Sangho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.5-11
    • /
    • 2014
  • The purpose of this paper is to investigate an analytical approach for opening performance evaluation of the nuclear pressure safety valve based on standard codes such as ASME or KEPIC. It is well-known that safety valve is considered as one of pressure relief valves for protecting a boiler or pressure vessel from exceeding the maximum allowable working pressure. When pressure in a container reaches its set pressure, the safety valve commences discharging the internal fluid by a sudden opening called as popping. Safety valve is usually evaluated by set pressure, full open, blow-down, leakage and flow capacity. The test procedure and technical requirement for performance evaluation is described in international code of ASME code such as BPVC. The opening characteristics of steam safety valve can be analyzed by computational fluid dynamics (CFD) and steam shaft dynamics. First, the flow analysis along opening process is simulated by running the CFD models of the ten types of opening steps from 0 to 100%. As a analysis result, the various CFD outputs of flow pattern, pressure, forces on the disc and mass flow at each simulation step is demonstrated. The lift force is calculated by using the forces applied on disc from static pressure and secondary flow. And, the effect of huddle chamber or control chamber is studied by dynamic analysis based on CFD simulation results such as lift force. As a result, dynamics analysis shows opening features according to the sizes of control chamber.