• 제목/요약/키워드: Fluid Analysis Simulation

검색결과 1,258건 처리시간 0.026초

격자볼츠만법을 이용한 2차원 압축성 충격파의 유동현상에 관한 수치계산 (Study on Analysis of Two-dimensional Compressible Waves by Lattice Boltzmann Method)

  • 강호근;노기덕;손강필;최민선;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.557-560
    • /
    • 2002
  • In this study, simulation of weak shock waves are peformed by a two-dimensional thermal fluid or compressible fluid model of the lattice Boltzmann method. The shock wave represents an abrupt change in fluids properties, in which finite variations in pressure, internal energies, and density occur over the shock thickness. The characteristics of the proposed model with a simple distribution function is verified by calculation of the sound speeds, and the shock tube problem. The reflection of a weak shock wave by wedge propagating in a channel is performed. The results agree well with those by finite difference method or by experiment. In the simulation of unsteady shock wave diffraction around a sharp corner, we show a flow field of vortical structure near the comer.

  • PDF

The application of BEM in the Membrane structures interaction with simplified wind

  • Xu, Wen;Ye, Jihong;Shan, Jian
    • Structural Engineering and Mechanics
    • /
    • 제31권3호
    • /
    • pp.349-365
    • /
    • 2009
  • Membrane structures are quite sensitive to wind and therefore the fluid-solid interaction can not be neglected in dynamic analysis. A boundary element method (BEM) for 3D simulation of wind-structure interaction in tensile membrane structures is presented in this paper. The flow is treated as incompressible and potential. The flow field is solved with boundary element method codes and structural simulation is performed by finite element method software ANSYS. The nonlinear equations system is solved iteratively, with segregated treatment of the fluid and structure equations. Furthermore this method has been demonstrated to be effective by typical examples. Besides, the influence of several parameters on the wind-structure interaction, such as rise-span ratio, prestress and the wind velocity are investigated according to this method. The results provide experience in wind resistant researches and engineering.

전산유체역학을 통한 PAV의 로터 블레이드 축간거리에 따른 호버링 성능 변화 연구 (A Study on Hovering Performance of Personal Air Vehicle According to Distance between Rotor Blade Axis via Computational Fluid Dynamics)

  • 윤재현;노우승;도재혁
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.53-60
    • /
    • 2022
  • In this study, the conceptual design and performance evaluation of a personal air vehicle (PAV) is presented, which is a potential futuristic individual transportation. The blade element theory (BET) is employed to compute a rotational velocity. A computational fluid dynamics (CFD) simulation is performed to investigate the difference in the thrust performance in the rotor axis distance of a quad-copter PAV in hovering. Modal analysis is performed to create a Campbell diagram to investigate critical speed. Consequently, a quad-copter PAV changes the aerodynamics thrust and critical velocity according to the rotor axis distance.

수중 폭발 시뮬레이션을 위한 경계 요소법 기반의 수치 해석 기법 연구 (A Study on BEM-Based Numerical Simulation Technique for Underwater Explosions)

  • 정준모;이재빈
    • 대한조선학회논문집
    • /
    • 제57권5호
    • /
    • pp.271-277
    • /
    • 2020
  • Recoverability and vulnerability of navy ships under underwater explosion are critical verification factors in the acquisition phase of navy ships. This paper aims to establish numerical analysis techniques for the underwater explosion of navy ships. Doubly Asymptotic Approach (DAA) Equation of Motion (EOM) of primary shock wave and secondary bubble pulse proposed by Geers-Hunter was introduced. Assuming a non-compressive fluid, reference solution of the DAA EOM of Geers-Hunter using Runge-Kutta method was derived for the secondary bubble pulse phase with an assumed charge conditions. Convergence analyses to determine fluid element size were performed, suggesting that the minimum fluid element size for underwater explosion analysis was 0.1 m. The spherical and cylindrical fluid domains were found to be appropriate for the underwater explosion analyses from the fluid domain shape study. Because the element size of 0.1 m was too small to be applied to the actual navy ships, a very slender beam with the square solid section was selected for the study of fluid domain existence effect. The two underwater explosion models with/without fluid domain provided very similar results in terms of the displacement and stress processes.

클러치 드래그 토크에 미치는 마찰재 면적 및 클리어런스의 영향 (Effects of Friction Plate Area and Clearance on the Drag Torque in a Wet Clutch for an Automatic Transmission)

  • 류진석;성인하
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.337-342
    • /
    • 2014
  • The reduction of drag torque is an important research issue in terms of improving transmission efficiency. Drag torque in a wet clutch occurs because of the viscous drag generated by the transmission fluid in a narrow gap (clearance) between the friction plate and a separate plate. The objective of this paper is to observe the effects of the friction plate area and the clearance on the drag torque using finite element simulation. The two-phase flow of air and oil fluid is considered and modeled for the simulation. The simulation analysis reveals that as the rotational speed increases, the drag torque generally increases to a critical point and then decreases sharply at a high speed regime. The clearance between the two plates plays an important role in controlling drag torque peak. An increase in the clearance causes a decrease in shear stress; thus, the drag torque also decreases according to Newton's law of viscosity. An observation of the effect of the area of contact between transmission fluid and friction plate shows that the drag torque increases with the contact area. The flow vectors inside the flow channel present clear evidence that the velocity of the fluid flows is faster with a larger friction plate, that is, in the case of a larger contact area. Therefore, the optimum size of the friction plate should be determined carefully, considering both the clutch performance and drag reduction. It is expected that the results from this study can be very useful as a database for clutch design and to predict the drag torque for the initial design with respect to various clutch parameters.

고온초전도동기모터의 전기적 손실에 따른 회전자의 유로 설계에 관한 연구 (A Study on the Analysis for Fluid Path Design of the Rotor considering Electrical Losses of High-Tc Superconducting Synchronous Motor)

  • 윤용수;송명곤;장원갑;장인배;이상진;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.98-100
    • /
    • 1998
  • This paper presents the fluid characteristics simulation and design guide line of the fluid path inside the rotor, which has an high-Tc superconducting field winding using Ag sheathed BSCCO-2223. The analysis was conducted with an equivalent model of the high-Tc superconducting synchronous motor under transition condition that occurs during the load varying from 250watt to 500watt. The results show that the designed fluid circulation system performs adequately in maintaining the superconducting state in the winding.

  • PDF

Design and Analysis of Heat Exchanger Using Sea Water Heat Source for Cooling

  • Kim, MyungRae;Lee, JuHee;Yoon, JaeOck
    • KIEAE Journal
    • /
    • 제16권3호
    • /
    • pp.25-34
    • /
    • 2016
  • Purpose: The temperature in Seoul has risen 3 times more than the average global temperature increase for the past 100 years. Today, summer starts 15 days earlier than the early 20th century and is 32 days longer. This tendency causes rapid increase of cooling energy demand. Following this effect, seawater heat resources are to be used as an countermeasure for global warming. Incheon Port near the Western Sea has the lowest water temperature in the winter in South Korea in which it is suitable to use seawater cold heat resources. Method: The cold heat resource is gained from seawater when the water temperature is the lowest in the winter time and saved in a seasonal thermal storage. This can be used as cold heat resource in the summer time. A heat exchanger is essential to gain seawater cold energy. Due to this necessity, sea water heat resource heat exchangers are modeled by heat transfer equations and the fluid characteristics are analyzed. Also, a CFD (computational fluid dynamics) program is used to conduct simulation on the fluid characteristics of heat exchangers. The analyzed data of deducted from this process are comprehensively analyzed and discussed. Result: Regarding the performance of the heat exchanger, the heat exchanger was operated following the prediction within the range of heat transfer rate of minimum 3.3KW to maximum 33.6KW per device. In the temperature change analysis of the heat exchanger, fluid analysis by heat transfer equations almost corresponded to the temperature change by CFD simulation. Therefore, it is considered that the results of this study can be used as design data of heat exchangers.

Electro-Rheological 유체를 이용한 무한폭 스퀴즈 필름 댐퍼 해석 (Analysis of an Infinitely Long Squeeze Film Damper Operating with an Electro-Rheological Fluid)

  • 정시영;최승복;조용철
    • 한국정밀공학회지
    • /
    • 제9권3호
    • /
    • pp.61-66
    • /
    • 1992
  • This paper addresses on the determination of damping coefficients of an infinitely long squeeze film damper operating with an electro-rheological (ER) fluid. The ER fluid behaves as Bingham fluid with an electric field dependent yield shear stress. AS phenomenological model of the fluid is adopted for the relationship between the yield shear and the intensity of the electric field imposed on the fluid domain. The model is then incorporated with the governing equation and associated boundary conditions of the squeeze film damper executing a circula centered orbit for the expression of dimension- less damping coefficients. Numerical simulation is performed to evaluate the performance improvement of the proposed squeeze film damper.

  • PDF

CFD를 활용한 Flow Angularity 풍동시험기법의 외장분리 해석(1) (Store Separation Analysis of Flow Angularity Wind Tunnel Test Technique using CFD (1))

  • 손창현;서성은
    • 한국항공우주학회지
    • /
    • 제45권1호
    • /
    • pp.10-20
    • /
    • 2017
  • 본 연구는 기존 Flow Angularity 장착물 분리 풍동시험 기법을 전산유체해석(Computational Fluid Dynamics)에 적용하여 해석 결과로부터 유동각 데이터베이스를 구성하고 6자유도 분리 궤적 해석한 결과를 전산유체해석의 CTS(Captive Trajectory Simulation) 해석 결과와 비교하여 CFD 해석 기법의 적용 가능성을 확인 한 것이다. Flow Angularity 기법의 전산유체해석 결과는 항공기와 외장간의 각 위치들에서 획득된 공력계수 데이터와 비교하여 데이터의 적절성을 확인하였다. 또한 Flow Angularity 기법으로 획득된 전산유체해석 데이터로부터 획득된 6자유도 외장 분리 궤적과 전산유체해석으로 해석한 CTS 외장분리 궤적을 비교하여 해석 기법의 적용 가능성을 확인하였다.

LES를 이용한 발전하는 혼합층에서의 입자 운동에 관한 수치 해석 연구 (Numerical study of Particle Motion in a Developing Mixing Layer using Large-eddy Simulation)

  • 김태진;서태원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.94-99
    • /
    • 2001
  • The numerical simulation of the particle dispersion in the vortical flows provides insight into the mechanism of particle-fluid interaction. The simulation results show that the mixing layers are characterized by the large-scale vortical structures undergoing pairing process. The particle dispersion is strongly influenced by the large-scale structures and the particle sizes. The analysis shows that the mixing layers grows like a step-function.

  • PDF