• 제목/요약/키워드: Fluent code

검색결과 389건 처리시간 0.028초

A Thermal hydraulic Investigation on ADSR Liquid Lead Target

  • Kim, Ju Y.;Byung G. Huh;Chang H, Chung;Tae Y. song;Park, Won S.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.666-671
    • /
    • 1998
  • Computational fluid dynamics(CFD) code FLUENT[11 was used to simulate the thermal hydraulic processes occuring in conceptual design of the accelerator-driven subcritical reactor(ADSR) liquid lead target. The purpose of the analysis is to investigate the thermal hydraulic characteristics of liquid lead as ADSR target material with various target geometries and injection locations of proton beam. In the calculation analysis, the local temperature of the liquid lead target rises to the boiling temperature very rapidly When the proton beam is injected from the bottom of the target system, the duration time to reach the boiling temperature is longer and the temperature distribution is flatter than other cases.

  • PDF

DVI적용시 원자로용기 Downcomer 지역의 온도분포 해석

  • 김대웅;김인환;박치용;정우태
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.457-462
    • /
    • 1997
  • 현재 국내외 대부분 원자력발전소(이하 원전)의 안전주입방식은 저온관 주입방식을 채택하고 있으며, 안전주입시 노심의 온도와 압력분포가 주요 관심 대상이었다. 하지만 향후 개발될 원전의 안전주입방식은 저온관주입이 아닌 안전주입의 신뢰성을 한단계 높인 원자로용기 직접주입방식인 DVI(Direct Vessel Injection)방식을 채택하고 있는 추세인데, 이 경우 관심분야는 원자로용기 dowmcomer지역까지 확대된다. 즉 저온의 안전주입수가 고온 고압의 원자로용기 downcomer지역으로 직접 주입됨으로 인해 이 지역의 유체유동과 혼합상태 및 온도분포가 주요관심 대상이 되며 이는 원자로용기의 PTS(Pressurized Thermal Shock)해석에 연결된다. 본 연구에서는 LOCA 사고시 DVI방식을 적응한 안전주입수 유입에 의한 원자로용기 downcomer지역의 유제유동과 유체혼합상태 및 온도분포를 열유체 해석 code인 FLUENT를 이용하여 해석하였다. 해석결과에 의하면 사고시 DVI에 의해 유입되는 약55℉인 저온 안전주입수는 유입과 동시에 넓은 지역으로 퍼지면서 dowmcomer지역의 고온 원자로냉각재와 적절히 혼합되어 하향유로를 따라 흐르며 PTS의 발생 원인인 국부적 유체비혼합 현상이나 온도 급하강현상은 발생하지 않는 것으로 나타났다.

  • PDF

충돌분류시스템의 열전달 특성에 관한 수치적 연구 (Numerical Study on Heat Transfer Characteristics in Impinging Air Jet System)

  • 금성민;김동춘
    • 한국태양에너지학회 논문집
    • /
    • 제23권4호
    • /
    • pp.55-61
    • /
    • 2003
  • Heat transfer characteristics for an air jet vertically impinging on a flat plate with a set of hybrid rods was investigated numerically using the RNG k-$\varepsilon$turbulent model. A commercial finite-volume code FLUENT is used. The rods had cross sections of half circular and rectangular shapes. The heating surface was heated with a constant heat flux value of $1020W/m^2$. Parameters investigated were the jet Reynolds number, nozzle -to-plate spacing, the rod pitch and rod-to-plate clearance. The local and average Nusselt number were found to be dependent on the rod pitch and the clearance because installing rods disturbed the flow. Higher convective heat transfer rate occurred in the whole plate as well as in the wall jet region.

표면조직 가공한 유압부품면에서의 윤활특성 (Lubrication Characteristics of Surface Textured Hydraulic Machine Components)

  • 이준오;박태조
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권4호
    • /
    • pp.26-31
    • /
    • 2012
  • Friction reduction between sliding hydraulic machine components is required to improve efficiency and reliability of hydraulic machineries. It is recently reported that surface texturing on sliding bearing surfaces can reduce the friction force highly. In this paper, numerical analysis is carried out to investigate the effect of dimple numbers and inlet boundary pressures on the lubrication characteristics of a parallel sliding bearing using a commercial computational fluid dynamics (CFD) code, FLUENT. The results show that the pressure distribution, load capacity, dimensionless friction force and leakage with dimple number and their locations, and inlet pressures. The overall lubrication characteristics are highly affected by dimple numbers and boundary pressure. The numerical method adopted and results can be used in design of efficient hydraulic machine components.

받음각을 갖는 축대칭 물체의 후류 유동 계산 (Computation of Wake Flow of an Axisymmetric Body at Incidence)

  • 김희택;이평국;김형태
    • 대한조선학회논문집
    • /
    • 제43권2호
    • /
    • pp.186-196
    • /
    • 2006
  • The turbulent wake flow of an axisymmetric body at incidence of $10.1^{\circ}$ is investigated by commericial CFD code, Fluent 6.2. Reynolds stress turbulence model with wall function is applied for the turbulent flow computation. For the grid generation, the Gridgen V15 is used. Numerical predictions are compared with experimental data for the validation. The computed results show goof agreements with the experimental measurements, implying that the CFD analysis is a useful and efficient tool for predicting turbulent flow characteristics of wake field of an axisymmetric body at incidence.

NACA 0015 익형에 대한 Gurney 플랩의 영향 (Effect of the Gurney Flap on NACA 0015 Airfoil)

  • 유능수;이장호
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.71-76
    • /
    • 2000
  • A numerical investigation was performed to determine the effect of the Gurney flap on NACA 0015 airfoil. A Navier-Stokes code. FLUENT, was used to calculate the flow field about the airfoil. The fully-turbulent results were obtained using the standard ${\kappa}-{\varepsilon}$ two-equation turbulence model. The numerical solutions showed the Gurney flap increased both lift and drag. These results suggested that the Gurney flap served to increase the effective camber of the airfoil. Gurney flap provided a significant increase in lift-to-drag ratio relatively at low angle of attack and for high lift coefficient. It turned out that 0.75% chord size of flap was best. The numerical results exhibited detailed flow structures at the trailing edge and provided a possible explanation for the increased aerodynamic performance.

  • PDF

소수력 발전용 프란시스 수차의 수력학적 성능에 관한 연구 (A Study on Hydraulic Performance of Francis Turbine for Small Hydropower Plants)

  • 최주석;김일수;문채주;김옥삼
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.687-689
    • /
    • 2005
  • Francis turbine of commercial small hydro -power plants under 10kw which is investigate a flow characterist and an efficiency in the research which it sees, the problem and an improvement is investigate. In the research which it is simply model with casing, guide-vane, runner, draft tube for simulation numerical analysis of small-sized Francis turbine. model uses the Gambit and it composes with approximately 800,000 nonuniform lattices. Solutions are investigate the hydraulic characteristics against an outward angle of guide vane, the number of guide vane, head(inlet velocity) by using FLUENT which is a commercial business code.

  • PDF

Walking Beam형 열연 재가열로의 3차원 수치해석 (Three Dimensional Numerical Analysis of the Walking Beam Type of a Hot Roll Reheat Furnace)

  • 김종규;허강열;김일태
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.199-204
    • /
    • 1999
  • Three dimensional numerical analysis for the turbulent reactive flow and radiative heat transfer in the walking beam type of a reheat furnace in POSCO has been carried out by the industrial code FLUENT. Computations an based on the conservation equations of mass, momentum, energy and species with the $k-{\varepsilon}$ turbulence model and mixture fraction/PDF(Probability Density Function) approach for the combustion rate. Radiative heat transfer is computed by the discrete ordinates radiation model in combination with the weighted-sum-of-gray-gas model for the absorption coefficient of gas medium. The predicted temperture distribution in the reheat furnace and energy flow fractions are in reasonable agreement with the measurement data.

  • PDF

Numerical calculation of the wind action on buildings using Eurocode 1 atmospheric boundary layer velocity profiles

  • Lopes, M.F.P.;Paixao Conde, J.M.;Gomes, M. Gloria;Ferreira, J.G.
    • Wind and Structures
    • /
    • 제13권6호
    • /
    • pp.487-498
    • /
    • 2010
  • When designing structures to the wind action, the variation of the mean wind velocity and turbulence parameters with the height above the ground must be taken into account. This paper presents the numerical simulation results of atmospheric boundary layer (ABL) airflows, in a numerical domain with no obstacles and with a cubic building. The results of the flow characterization, obtained with the FLUENT CFD code were performed using the ${\kappa}-{\varepsilon}$ turbulence model with the MMK modification. The mean velocity and turbulence intensity profiles in the inflow boundary were defined in accordance with the Eurocode 1.4, for different conditions of aerodynamic roughness. The maintenance of the velocity and turbulence characteristics along the domain were evaluated in an empty domain for uniform incident flow and the ABL Eurocode velocity profiles. The pressure coefficients on a cubic building were calculated using these inflow conditions.

NREL Phase VI 수평축 풍력터빈의 공력특성에 관한 수치적 연구 (A Numerical Study on the Aerodynamic Characteristics for a HAWT of NREL Phase VI)

  • 모장오;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.886-895
    • /
    • 2009
  • The purpose of this work is to compare and analyze computed results with experimental data of NREL (National Renewable Energy Laboratory) Phase VI for the whole operating conditions of various wind speeds using $\kappa-\omega$ turbulence model provided in the commercial code, FLUENT. Performance results such as power coefficient, shaft torque, pressure coefficient show a good agreement with experimental data. But, root bending moment is over-predicted than the experimentally measured value by about 30% for the whole operating conditions because of indefinite measurement reference. Nevertheless, these results qualitatively show a good tendency in the aspect of aerodynamic performance. As wind speed increases, streamlines on the surface of blade show more and more complex pattern.