• Title/Summary/Keyword: Fluent 모형

Search Result 43, Processing Time 0.038 seconds

Analysis of Flow Characteristics in Four-Way Combining Manholes Using Fluent Model (Fluent 모형을 이용한 4방향 합류맨홀의 흐름특성 분석)

  • Kim, Chae Rin;Kim, Jung Soo;Han, Jung Suk;Yoon, Sei Eui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.360-360
    • /
    • 2016
  • 도시 배수 시스템에서 유입유량이 관거의 만관 상태를 초과하거나 하류 흐름 때문에 발생하는 역류의 영향을 받는다면, 관거 시설은 과부하(surcharge) 상태인 압력흐름이 된다. 중력흐름 상태에서 맨홀의 수두 손실은 일반적으로 무시되지만, 과부하 맨홀에서의 수두 손실은 중요하며, 우수 관거 시스템의 전체 손실에 상당한 부분을 차지하게 된다. 이러한 현상은 여러 개의 맨홀을 가지는 도시 배수 시스템에서 특히 중요한 사항이 된다. 따라서 관거 시설 내 맨홀에서의 수리적 에너지 손실에 대한 연구와 보다 구체적인 설치 기준의 제시가 요구되고 있는 실정이다. 특히 배수관거 시스템의 하류부에 설치되는 4방향 합류맨홀은 맨홀으로 유입되는 주 유입관과 측면 유입관의 유입흐름의 영향으로 맨홀 내의 유수교란에 의한 흐름특성이 복잡하므로 이에 따른 흐름특성의 변화를 분석하고 에너지 손실을 연구할 필요가 있다. 그러므로 우수 관거 시스템의 우수 배제 능력을 증가시켜 도심지의 침수를 방지하기 위한 관거시설의 적정 설계 기준이 필요하며, 합리적인 설계 기준을 제시하기 위하여 과부하 4방향 합류 맨홀 내에서의 수두 손실을 분석할 필요가 있다. 본 연구에서는 수리모형 실험의 물질적, 시간적 한계를 극복하고 과부하 4방향 합류맨홀에서의 복잡한 흐름특성을 분석하기 위하여 일반적으로 3차원 유체거동의 특성분석에 많이 사용되는 FLUENT 6.3 모형을 선택하였다. 합류맨홀 및 접합 관거의 기하 모형의 격자망은 수치해석의 안정성 확보를 위하여 맨홀과 연결관의 합류부분에서는 사면체 격자로 구성하고 합류부분을 제외한 구간에서는 6면체 격자로 구성하였으며, 각 격자의 면은 가능한 사각형 또는 삼각형의 형태를 취하도록 하였다. 합류맨홀 모형의 벽면에는 No-Slip 경계조건을 부여하였으며, 유입부에는 속도 조건, 유출부와 맨홀의 자유수면 부분의 경계에서는 대기압 조건을 부여하였다. 수리모형 실험 결과와 비교하기 위하여 유입 관거의 유속 조건을 수리 모형실험의 조건과 동일하게 채택하여 수치모의를 수행하였다. 수치모형의 적용 결과 맨홀 내에서의 유속변화, 수심변화 및 압력변화에 대해서는 수리모형 실험 결과와 유사한 경향을 나타내고 있으며, 수치모형에 의하여 산정된 4방향 합류맨홀에서의 손실계수 값과 수리모형 실험에 의하여 산정된 손실계수 값이 유사하므로 우수 관거 시스템의 4방향 합류맨홀에서의 흐름 변화 및 손실계수 예측하는 데에 있어서 FLUENT 6.3 모형은 사용 가능하리라 판단된다.

  • PDF

Calculation of Head Loss Coefficient at Surcharged Circular Manhole Using Fluent Model (Fluent 모형을 이용한 과부하 원형 맨홀에서의 손실계수 계산)

  • Kim, Jung-Soo;Kim, Jong-Woo;Kim, Hyung-Min;Yoon, Sei-Eui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1828-1832
    • /
    • 2008
  • 우수 관거 시스템에서 흐름은 중력에 의해서 흐르고 개수로 흐름과 같이 처리된다. 그러나 유입유량이 관거의 만관 상태를 초과하거나 하류 흐름의 제한 때문에 발생하는 역류의 영향을 받는다면, 우수 관거 시스템은 과부하(surcharge) 상태의 압력흐름이 된다. 개수로 상태에서 맨홀에서의 수두 손실은 일반적으로 무시되지만, 과부하 맨홀에서의 수두손실은 중요하며, 우수 관거 시스템의 전체 손실에 중요한 부분을 차지하게 된다. 이러한 현상은 여러 개의 맨홀을 가지는 우수 관거 시스템에서 특히 중요한 사항이 된다. 현재 계획 또는 설계단계에서 수행되고 있는 관거 시설의 수리계산에서는 연결관의 마찰손실만을 감안하여 수행하고 있으며, 맨홀에서의 수두손실은 고려되지 않는 실정이다. 본 연구에서는 일반적으로 3차원 유체거동의 특성분석에 많이 사용되는 Fluent 모형을 이용하여 과부하 원형 맨홀에서의 흐름특성을 수치모의 하였으며, 맨홀내 손실수두의 변화를 계산하여 손실계수를 산정하였다. 계산된 손실계수는 수리모형 실험을 통하여 산정된 손실계수와 비교하였다. 수치 모형에 의해서 산정된 손실계수 값이 수리모형 실험에 의해서 산정된 손실계수 값보다 약간 크게 산정되었다. 앞으로 난류 모형의 매개 변수들의 조정을 통한 정확한 수치모의 연구가 필요하다고 판단된다.

  • PDF

Application of Fluent Model for Surface Drainage Analysis on Bridge (교면에서 표면배수 해석을 위한 Fluent 모형 적용)

  • Kim, Jung Soo;Lee, Sung Ho;Cho, Hyun Ho;Han, Chung Such
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.251-251
    • /
    • 2018
  • 도로설계기준(2012)에 따르면 노면 배수시설은 측구, 집수정, 배수관, 배수구(빗물받이, 맨홀) 등으로 구성되며 중앙분리대 배수에서 구조가 방호벽일 경우 원칙적으로 집수정과 종배수관, 횡배수관을 설치하여 노면수를 배수한다. 최근 기후변화에 따른 국지성 집중호우로 교량 배수시설의 배수능력 부족으로 교량의 노후화, 노면의 체수와 수막현상을 야기한다. 교량 설계 시, 교량의 외관은 점배수에 의한 배수불량으로 막힘부에서의 식물생육, 부식, 배수구의 오염 등으로 심미성에 악영향을 미치고 있다. 따라서 국토교통부 도로 배수시설 설계 및 관리지침에서는 기존의 집수정으로 유도하여 배수하는 점배수 형태에서 우수의 지체시간을 저감하기 위해 배수구로 즉시 배수되어 배수 효율을 증가시켜주는 선배수시설을 권장하고 있다. 그러나 선배수 구조의 일반적인 내용만을 기술하고 있으므로 보다 상세한 설계기준이 필요하다. 또한 국내에서는 교면 배수를 위한 횡배수구의 배수능력에 관한 설계 개념은 미국의 빗물받이 설계 개념을 그대로 적용하고 있어서 교량 배수시설의 배수능력 증대를 위한 수치 및 수리실험에 관한 기술적인 자료가 부족한 실정이다. 따라서 도로의 흐름해석 및 선배수를 위한 측구 횡배수관의 흐름개선에 관한 구체적인 연구가 필요한 실정이다. 본 연구에서는 배수로 전반의 유향 분석 및 횡유입관 유입부에서의 상세한 흐름해석과 통수능력을 분석하기 위해서는 수리실험을 통한 연구가 필요한 실정이다. 그러나 최적 횡배수관의 형상 및 간격 설정에 대한 수리실험의 물리적 및 시간적 한계를 극복하기 위해 Fluent 모형(Ansys Workbench 13.0)을 활용한 수치모의를 수행하여 모형의 적용성을 검토하였다. 다상유동 해석을 위해 VOF(Volume of Fluid)방법을 적용하였고, 수치해석 방법으로는 비정상류, 난류 모형으로는 standard ${\kappa}-{\varepsilon}$모형을 적용했다. 도로 형상에 따른 우수유출량을 비교 분석하기 위하여 횡경사는 2%로 고정하고 종경사를 2%로 선정하여 수치모의를 통한 배수능력을 분석하고 설계에 직접적인 적용성을 검토하였다. 횡배수관의 간격변화 및 배수공의 위치 변화 등에 따른 차집량을 분석하였으며, 개략적인 수리실험 결과와 수치모의의 차집율을 비교 및 분석하여 Fluent 모형의 적용성을 확인하였다. 또한, 횡배수관의 유입부에서의 유속 변화 및 유출부에서의 유속이 모의가 가능하므로 배수시설에서 보다 정확한 흐름 해석이 가능하여 보다 적정한 배수능력 분석이 가능할 것으로 판단된다.

  • PDF

Analysis of Stream Characteristics at Combine Junction Manhole Using Fluent Model (Fluent 모형을 이용한 합류 맨홀에서의 흐름특성 분석)

  • Kim, Jung-Soo;Chio, Hyun-Soo;Kim, Hyung-Min;Yoon, Sei-Eui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.649-653
    • /
    • 2010
  • 일반적으로 계획 또는 설계 단계에서 수행되고 있는 관거 시설의 수리계산에는 연결관 내에서의 마찰손실만을 감안하여 수행하고 있으며, 맨홀에서의 에너지 손실은 고려되지 않는 실정이다. 그러나 연결관 내부와 맨홀의 내부는 여러 가지 수리학적 조건이 다르므로 에너지 손실이 발생하게 된다. 더욱이 직선으로 연결된 중간맨홀보다 두 개의 유입관과 한 개의 유출관으로 구성된 합류맨홀은 연결 구조상 유수교란에 의한 에너지 손실이 커질 것으로 예상됨에도 불구하고 현재 실무에서 우수 배수시설의 설계 시 직선 연결맨홀과 합류맨홀의 손실을 구별하지 않고 사용하고 있는 실정이다. 그러므로 합류맨홀에서 우수 관거 시스템의 우수 배제 능력을 증가시켜 도심지의 침수를 방지하기 위한 관거시설의 적정 설계 기준이 필요하며, 합리적인 설계 기준을 제시하기 위하여 합류 맨홀 내에서의 수두 손실을 분석할 필요가 있다. 본 연구에서는 수리 모형 실험의 물질적, 시간적 한계를 극복하기 위하여 일반적으로 3차원 유체거동의 특성분석에 많이 사용되는 Fluent 6.3 모형을 이용하여 과부하 합류 맨홀에서의 흐름특성을 수치모의 하였으며, 맨홀 내 손실수두의 변화를 계산하여 손실계수를 산정하였다. 계산된 손실계수는 수리모형 실험을 통하여 산정된 손실계수와 비교하였다. 또한 동일한 수치모의 해석 조건을 실제 합류맨홀에 적용하여 실제 합류 맨홀의 규모 변화에 따른 손실계수를 산정하였다. 수치모형의 적용 결과 맨홀 내에서의 유속변화, 수심변화 및 압력변화에 대해서는 수리모형 실험 결과와 유사한 경향을 나타내고 있으며, 수치모형에 의하여 산정된 합류 맨홀에서의 손실계수 값과 수리모형에 의하여 산정된 손실계수 값이 거의 유사하게 나타났다. 또한 동일한 수치모의 해석 조건을 실제 합류맨홀에 적용하여 합류맨홀의 규모 변화에 따른 손실계수를 산정하였으며, 산정된 손실계수는 우수관거 시스템의 설계 및 평가에 사용가능하리라 판단된다.

  • PDF

Estimation of Head Loss Coefficients at Surcharged Square Manhole Using Numerical Model (수치모형을 이용한 과부하 사각형 맨홀에서의 손실계수 산정)

  • Kim, Jung-Soo;Lim, Ga-Hui;Rim, Chang-Soo;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.143-150
    • /
    • 2011
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban area. Therefore, it is important to analyze the head losses at manholes, especially in case of surcharged flow. The stream characteristics were analyzed and head loss coefficients were estimated by using the computational fluid dynamics(CFD) model, FLUENT 6.3, at surcharged square manhole in this study. The CFD model was carefully assessed by comparing simulated results with the experimental ones. The study results indicate that there was good agreement between simulation model and experiment. The CFD model was proved to be capable of estimating the head loss coefficients at surcharged manholes. The head loss coefficients with variation of the ratio of manhole width(B) to inflow pipe diameter(d) and variation of the drop height at surcharged square manhole with a straight-path through were calculated using FLUENT 6.3. As the ratio of B/d increases, head loss coefficient increases. The depth and head loss coefficient at manhole were gradually increased when the drop height was more than 5cm. Therefore, the CFD model(Fluent 6.3) might be used as a tool to simulate the water depth, energy losses, and velocity distribution at surcharged square manhole.

The Comparison of Flow Simulation Results around a KLNG Model Ship (KLNG선 모형 주위의 유동계산 비교)

  • Kim, Byoung-Nam;Kim, Wu-Joan;Kim, Kwang-Soo;Park, Il-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.219-231
    • /
    • 2009
  • Numerical simulations have been carried out for a 138K LNG Carrier (KLNG) model ship with free surface, using WAVIS 2.0 and Fluent 6.3.26 with various $y^+$ values and different grid densities. Level-set method for free surface capturing was adopted in WAVIS, while VOF has been used in Fluent. The calculated results were compared with the experiment data. Resistance coefficient, wave pattern, wave profile along the hull surface, axial velocity contours and transverse vectors had been analyzed. When the first $y^+$ value was fixed at 60, the simulation results from both WAVIS and Fluent were improved as the number of grids increased. The convergence time of WAVIS was much shorter than that of Fluent. Furthermore, WAVIS predicted the velocity field and the wave profile along the hull surface better than Fluent. However, Fluent gave better wave patterns.

Backflow Flow Analysis of Street Inlet drain using Fluent Model (빗물받이 연결관 역류 흐름 해석을 위한 Fluent 모형 적용)

  • Lee, Min Sung;Kim, Jung Soo;Yoo, In Gi;Yoo, Kyu Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.245-245
    • /
    • 2022
  • 최근 국내 기후변화에 따른 국지성 집중호우로 인한 시간당 강우량의 증가로 도로부 유출량의 증가와 배수관거에서의 내수배제 불량에 따른 도심지 내수침수 피해가 증가함에 따라 이를 해결하기 위한 우수유출저감시설이 설치되고 있다. 그러나 대단위의 지하 저류시설의 지속적인 설치는 과밀화된 도심지에서 설치 지하공간의 구조적인 한계 및 적정 설치 위치의 미확보 등의 다양한 문제가 발생하여 저류시설의 침수저감 효과에 대한 추가적이고 새로운 저류시설에 대한 연구가 필요한 실정이다. 이에 내수 침수 저감 및 배수 능력 향상을 위한 도로 배수시설과 연계된 도로 측구부 저류시스템 구축이 필요하다. 이를 위해 역류 방지 및 노면수 저류 빗물받이에 적용되는 부력식 역류차단장치를 개발하였으며, 역류차단장치의 최적 형상 개발을 위해서 기존 빗물받이 연결관과의 통수능 비교 및 분석이 필요한 실정이다. 따라서 본 연구에서는 기존 빗물받이 연결관 및 연결관 내에 역류차단장치가 적용된 역류차단 빗물받이의 흐름분석을 위해 Fluent 모형을 이용하여 3차원 수치모의를 수행하였다. 수치모의 구성으로는 전체 형상을 40×50cm의 빗물받이 유입부와 50×50cm의 빗물받이로 결정하고 격자는 빗물받이 내부의 복잡한 3차원 흐름을 모의하기 위해 1.2~2mm 크기로 생성하였다. 다상유동 해석을 위해 VOF(Volume of Fluid)방법을 적용하였고, 수치해석 방법으로는 비정상류, 난류 모형으로는 SST k-𝜔모형을 적용하였다. 해석조건으로는 김정수(2021) 등이 제시한 4차선 기준 설계빈도별(5~30년) 빗물받이 유입유량을 산정하여 빗물받이 유입조건으로 선정하였으며, 빗물받이와 연결관에서의 통수능력 분석 조건으로는 빗물받이에 기존 연결관이 부착된 조건과 연결관 내에 역류차단장치가 설치되어 역류차단장치가 개방된 조건에서의 통수능을 비교하였으며, 역류상황을 가정한 연결관에서의 통수능을 비교하기 위하여 역류차단장치의 개폐정도를 15도(통수단면 33%감소) 닫힌 상태 및 30도(통수단면 67% 감소) 닫힌 상태 조건을 대상으로 빗물받이와 연결관에서의 흐름을 모의하였다. 수치모의 결과 역류차단장치의 계폐조건에 상관없이 5년 빈도유입량 조건에서는 완전 배수가 되었으며, 개폐조건 15도에서는 10년 빈도의 유입량에서는 완전 배수가 되었으나 20년 빈도 이상의 유입량 조건에서 빗물받이 유입부로의 역류가 발생하였으며, 개폐조건 30도에서는 5년 빈도 이상 유입량 조건에서 빗물받이 유입부로 역류가 발생하는 것으로 나타났다. 특히, 30년 빈도 이상의 유입량부터는 빗물받이 연결관 내에 역류차단장치 개페조건과 관계없이 빗물받이 유입부로의 역류로 인한 도로 침수가 발생하기 때문에 유휴공간인 도로 측구부를 저류공간으로 활용할 수 있는 도로 측구부 저류시스템의 구축은 필수적이라고 판단되며, 유량 조건에 따른 빗물받이 내부 와 흐름과 유출부에서의 유속 변화 특성을 확인하였다. 그러므로 측구 저류조 개발 형상과 연결한 3차원 흐름의 구현 및 분석에 Fluent 모형의 적용이 가능하다고 판단된다.

  • PDF

Flow Analysis in Road Gutter Storage Using Fluent Model (Fluent 모형을 이용한 도로 측구 저류조에서의 흐름 분석)

  • Kim, Jung Soo;Lee, Min Sung;Han, Chyung Such;Yoo, In Gi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.234-234
    • /
    • 2022
  • 도로에서의 우수를 원활하게 처리하기 위해서 빗물받이 및 연결관 등의 노면 배수시설이 설치되고 있으며, 노면 배수는 측구부를 통해 흘러 빗물받이 유입부로 차집되고 연결관을 통해 하수관거로 배수된다. 그러나 최근 국내 기상패턴의 변화로 국지성 집중호우와 같이 시간당 강우량 증가로 도로부와 저지대에서 배수시설의 배수불량에 따른 도심지 내수침수 피해가 발생하고 있다. 이에 정부에서는 다양한 우수관거 개선사업, 빗물펌프장, 지하저류조와 같은 방재시설을 설치하고 있으나 우수유출저감시설은 대규모 예산이 소요되고 실제 침수지역에 피해 저감효과에 대한 효용성 문제에 대한 제기뿐만 아니라 과밀화된 도심지에서는 지하공간 활용에 한계가 있는 실정이므로 도심지의 다양한 공간을 활용한 도시 배수 및 저류시설에 대한 연구가 필요하다. 따라서 본 연구에서는 유휴 공간인 도로 측구부 공간을 활용하여 도로 노면수를 저류 및 지체할 수 있는 노면수 측구 저류시설의 개념을 제시하고 측구저류조의 활용성을 판단하기 위하여 빗물받이 유입구, 빗물받이, 측구 저류조 및 빗물받이와 측구저류조 연결부에서의 노면수 유입, 유출 및 저류 등의 다양한 흐름 변화를 확인하기 위하여 Fluent 모형의 적용성을 분석하였다. 수치모의 전체 형상은 50x50cm 크기의 빗물받이를 기준으로 양쪽에 2m 길이의 측구 저류조를 원형관으로 연결하여 1/5 축소모형으로 구성하고 격자는 빗물받이 유입부, 빗물받이 및 측구 저류조 내부의 복잡한 3차원 흐름을 모의하기 위해 사면체와 육면체로 조밀하게 생성하였다. 다상유동해석을 위해 VOF(Volume of Fluid)방법을 적용하였고, 수치해석 방법으로는 비정상류, 난류 모형으로는 SST k-ω모형을 적용하였다. 수치모의 조건으로는 설계빈도별(5~30년) 우수유출량을 산정하여 유입 유량별 기존 빗물받이 유입부에서의 유입흐름, 빗물받이 내부에서의 와 발생흐름, 측구 저류조 및 연결관에서의 흐름을 구현하여 분석하였다. 수치모의 결과 빗물받이 유입부에서 연결관을 통한 측구 저류조로 유입되는 유입흐름과 빗물받이 하단부의 배수관을 통해 유출되는 흐름을 정상적으로 구현하였으며, 빗물받이 유입부 및 측구 저류조 연결관에서의 유속변화도 확인할 수 있었다. 또한 빗물받이와 측구 저류조에서 다양한 흐름을 구현하기 위한 Flunet 모형의 적용성을 검토하였으며, 향후 수리실험을 통하여 실제 흐름과의 매개변수 최적화 및 다양한 도로 조건의 변화를 고려한 수치모의 분석을 통하여 지속적인 모형의 검증이 가능할 것으로 판단된다.

  • PDF

Analysis of Stream Characteristics at Tangential Intake Structure of Deep Underground Strom Water Tunnel (대심도 빗물배수터널의 접선식 유입구 흐름특성 분석)

  • Kim, Jung-Soo;Kim, So-Young;Choi, Tea-Soon;Yoon, Sei-Eui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.604-604
    • /
    • 2012
  • 국지성 집중호우에 따른 도심지 내수 침수 피해의 주원인으로 하수관거의 설계기준을 초과하는 강우가 침수피해의 주요 원인이며, 도심화로 인해 불투수 면적이 증가함에 따라 유출되는 시간이 짧아 저지대의 피해는 불가피하다. 2010년과 2011년에 100년 이상의 강우사상이 서울시에 연이어 나타나면서 집중호우로 인한 피해지역이 유사하게 나타났으며, 광화문 거리의 연이은 침수는 현재 서울시의 하수관거의 용량과 빗물펌프장 및 저류조 시설로 구성된 기존 수방대책의 한계점을 보이고 있다. 이에 서울시는 광화문 일대의 배수능력을 향상시키기 위하여 효자배수분구 빗물배수터널을 계획하고 있다. 일본, 미국 및 유럽 등지에서는 대심도 지하수로 시설에 대한 수리실험 및 수치 연구를 바탕으로 다양한 지하방수로가 건설되어 국지성 집중 강우에 대해 적절히 대응하고 있으나, 국내의 경우에는 대심도 지하방수로 시설에 대한 연구가 미비하여 지하방수로 설계 지침 및 기술적 자료가 부족한 실정이다. 그러므로 대심도 빗물배수터널 시설에서의 흐름특성 분석에 관한 수리실험 및 수치해석 등의 구체적인 연구가 필요하다고 판단된다. 본 연구에서는 수리모형 실험의 물질적 및 시간적 한계를 극복하기 위하여 일반적으로 3차원 유체거동의 특성분석에 많이 사용되는 Fluent 6.3 모형을 이용하여 대심도 빗물배수터널 시설의 접선식 유입구에 대한 흐름특성을 수치모의 하였다. 접선식 유입구 및 수직갱(drop shaft)에 대한 기하 모형의 격자망은 수치해석의 안정성 확보를 위하여 그림 1과 같이 6면체 격자로 구성하였다. 맨홀 내의 다상유동을 고려하기 위하여 VOF(Volume of Fluid) Scheme을 적용하였으며, 수치해석 방법으로는 비정상류, 1st order implicit method를 사용하였다. Fluent에서의 난류 흐름을 계산하는 방법에는 난류 운동에너지와 난류 에너지 소산율 $\epsilon$의 전달 방정식을 도입한 k-$\epsilon$ 난류 모형을 채택하였다.

  • PDF