• Title/Summary/Keyword: Fluctuation effect

Search Result 661, Processing Time 0.029 seconds

Interaction fields based on incompatibility tensor in field theory of plasticity-Part II: Application-

  • Hasebe, Tadashi
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.15-30
    • /
    • 2009
  • The theoretical framework of the interaction fields for multiple scales based on field theory is applied to one-dimensional problem mimicking dislocation substructure sensitive intra-granular inhomogeneity evolution under fatigue of Cu-added steels. Three distinct scale levels corresponding respectively to the orders of (A)dislocation substructures, (B)grain size and (C)grain aggregates are set-up based on FE-RKPM (reproducing kernel particle method) based interpolated strain distribution to obtain the incompatibility term in the interaction field. Comparisons between analytical conditions with and without the interaction, and that among different cell size in the scale A are simulated. The effect of interaction field on the B-scale field evolution is extensively examined. Finer and larger fluctuation is demonstrated to be obtained by taking account of the field interactions. Finer cell size exhibits larger field fluctuation whereas the coarse cell size yields negligible interaction effects.

New Density-Independent Model for Measurement of Grain Moisture Content using Microwave Techniques

  • Kim, Jong-Heon;Kim, Ki-Bok;Noh, Sang-Ha
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.72-78
    • /
    • 1997
  • A free space transmission method using standard gain horn antennas in the frequency range from 9.0 to 10.5GHz is applied to determine the dielectric properties of grain such as rough rice ,brown rice and barley. The dielectric constant and loss factor, which depend on the moisture content of the wetted grain are obtained from the measured attenuation and phase shift by vector network analyzer. The moisture content of grain varied from 11 to 25% based on this wetted condition. The measured values of dielectric constants as a function of moisture density are compared with values of those obtained using he predicted model for estimating dielectric constants of grain. The effect of density fluctuation, high is an important parameter governing the dielectric properties of grain, on the dielectric constant and loss factor is presented. A new density-independent model in terms of measured attenuation an moisture density is proposed of reducing the effects of density fluctuation on the moisture content measurement.

  • PDF

The fluctuation and the rigidity study of F-actin filaments in a confined space

  • Park, Myung-Chul;Youli Li;Cyrus R. Safinya;Kim, Mahn-Won
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.67-67
    • /
    • 2003
  • Filamentous actin (F-actin) is a two stranded long helix that performs structural function in eukaryotic cells. F-actin had been assembled from Alexa-labeled G-actin and had been confined in microchannel. The fluctuation of single filaments was observed by fluorescence optical microscopy. We measured Tangent-tangent Correlation Function G(s) (where s is the distance along the contour of the chain), which tells us the confining wall effect of wormlike semi-flexible polymers as well as the flexural rigidity, such as persistence length.

  • PDF

BESS Modeling and Application to Voltage Compensation of Electric Railway System (BESS 모델링 및 전기철도 급전계통에의 전압보상 적용)

  • Yoo, Hyeong-Jun;Son, Ho-Ik;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.417-423
    • /
    • 2013
  • The load of electric railroad can generate voltage fluctuation in the electric railway system because of high speed of the electric railroad and frequent movement and stop. This voltage fluctuation of electric railway system can cause not only voltage imbalance but also harmonic in the utility grid. Therefore the electric railroad system is in need of the reactive power compensation, such as static synchronous compensator (STATCOM) and static var compensator (SVC). Especially, the battery energy storage system (BESS) can control the real and reactive power at the same time. In this paper, the electric railway system using BESS has been modeled to show its voltage compensation effect using Matlab/Simulink.

Pulse Broadening of Optical Pulse Propagated through the Turbulent Atmosphere (교란대기를 통해 전송되는 광 펄스의 퍼짐에 관한 연구)

  • 정진호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.29-35
    • /
    • 2004
  • When an optical pulse is propagated through the atmosphere space, it is attenuated and broadened by the effect of atmospheric turbulence. This pulse broadening is occurred by the fluctuation in the arrival time of pulse at an optical receiver. In digital optical communication, the attenuation is important factor but the pulse broadening is more important. In this paper, thus, we will find the broadening of pulse propagated through the turbulent atmosphere, present it as the function of the structure constant for the refractive index fluctuation, and simulate it to the turbulent strength and the transmission length.

Numerical Prediction of Acoustic Sounds Occurring by the Flow Around a Circular Cylinder

  • Kang, Ho-Keun;Ro, Ki-Deok;Michihisa Tsutahara;Lee, Young-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1219-1225
    • /
    • 2003
  • Acoustic sounds generated by uniform flow around a two-dimensional circular cylinder at Re=150 are simulated by applying the finite difference lattice Boltzmann method. A third-order-accurate up-wind scheme is used for the spatial derivatives. A second-order-accurate Runge-Kutta scheme is also used for time marching. Very small acoustic pressure fluctuation, with same frequency as that of Karman vortex street, is compared with pressure fluctuation around a circular cylinder. The propagation velocity of acoustic sound shows that acoustic approaching the upstream, due to the Doppler effect in uniform flow, slowly propagates. For the downstream, on the other hand, it quickly propagates. It is also apparent that the size of sound pressure is proportional to the central distance ${\gamma}$$\^$-1/2/ of the circular cylinder.

The Accuracy analysis of a RFID-based Positioning System with Kalman-filter (칼만필터를 적용한 RFID-기반 위치결정 시스템의 정확도 분석)

  • Heo, Joon;Kim, Jung-Hwan;Sohn, Hong-Gyoo;Yun, Kong-Hyun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.447-450
    • /
    • 2007
  • Positioning technology for moving object is an important and essential component of ubiquitous. Also RFID(Radio Frequency IDentification) is a core technology of ubiquitous wireless communication. In this study we adapted kalman-filter theory to RFID-based Positioning System in order to trace a time-variant moving object and verify the positioning accuracy using RMSE (Roong technology for moving object is an important and essential component of ubiquitous Mean Square Error). The purpose of this study is to verify an effect of kalman-filter on the positioning accuracy and to analyze what does each design factor have an effect on the positioning accuracy by means of simulations and to suggest a standard of optimal design factor of a RFID-based Positioning System. From the results of simulations, Kalman-filer improved the positioning accuracy remarkably; the detection range of RFID tag is not a determining factor. The smaller standard deviation of detection range improves the positioning accuracy. However it accompanies a smaller fluctuation of the positioning accuracy. The larger detection rate of RFID tag yields the smaller fluctuation in the positioning accuracy and has more stable system and improves the positioning accuracy;

  • PDF

Nonlinear analysis of cardiotonic effect of acupuncture treatment on heart rate variability assessed by 24-hour Holter monitoring (침처치의 24시간 심박변이도 영향에 대한 비선형 분석)

  • Oh, Dal-Seok;Lee, Jeon;Kim, Jong-Yeol;Choi, Sun-Mi
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.1
    • /
    • pp.85-89
    • /
    • 2008
  • This study is to investigate cardiotonic effect of acupuncture on heart rate variability(HRV) analyzed by a nonlinear way(DFA, Detrended Fluctuation Analysis). It was designed as a randomized, single-blind, waiting list-controlled, cross-over study. We assessed heart rate and R-R intervals in Circadian electrocardiography with a Holter monitoring device for twelve hospitalized participants. The compatible analytical program, Zymed, was used for generating the signals of R-R intervals from 24 hour-ECG. In DFA analysis, we produced DFA alpha 1, alpha 2 parameters according to the process of Cygwin module of Linux server. We tested if there was any difference between HRV parameters using SPSS, a statistical package. There was no difference between acupuncture and no treatment group in DFA alpha 2 parameter {95% Confidence Interval (-)0.058 - 0.037, P = .565}. Two group all showed large intra-individual variations. Consequently, acupuncture treatment did not modulate the complexity of HRV in a DFA analysis. This study can be a rationale for acupuncture's properties on cardiovascular and autonomic systems.

  • PDF

The Effect of Intake and Exhaust Pulsating Flow on the Volumetric Efficiency in a Diesel Engine (디젤기관의 흡.배기관 맥동류가 체적효율에 미치는 영향)

  • Lee, S.D.;Kang, H.Y.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.11-16
    • /
    • 2006
  • The pressure fluctuation in the intake and exhaust pipe of 4 stroke-cycle diesel engine is caused by reciprocating motion of piston for suction of fresh air and exhaust of burned gas. this gas dynamic effect can be utilized for increase the volumetric efficiency. Many empirical studies have been carried out to investigate the effects of intake pulsating flow on the volumetric efficiency. However, when the gas dynamic effects are utilized for the variable speed engine to increase its performance, The speed range in which the maximum volumetric efficiency is limited and there occurs some difficulties in lay-out of intake system because it become too long. During induction process, as waves travel both directions, they are reflected and interacted each other and pressure waves are transmitted through it. Hence, the flow becomes more complex and unsteady flow. These pressure waves act upon intake pulsating flow and affects on the volumetric efficiency. In this paper the effects of pulsating flow of intake and exhaust pipes on volumetric efficiency were examined and evaluated. It was found that volumetric efficiency was affected by pulsating flow of intake and exhaust pipes.

  • PDF

Numerical prediction analysis of propeller bearing force for full-scale hull-propeller-rudder system

  • Wang, Chao;Sun, Shuai;Li, Liang;Ye, Liyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.589-601
    • /
    • 2016
  • The hybrid grid was adopted and numerical prediction analysis of propeller unsteady bearing force considering free surface was performed for mode and full-scale KCS hull-propeller-rudder system by employing RANS method and VOF model. In order to obtain the propeller velocity under self-propulsion point, firstly, the numerical simulation for self-propulsion test of full-scale ship is carried out. The results show that the scale effect of velocity at self-propulsion point and wake fraction is obvious. Then, the transient two-phase flow calculations are performed for model and full-scale KCS hull-propeller-rudder systems. According to the monitoring data, it is found that the propeller unsteady bearing force is fluctuating periodically over time and full-scale propeller's time-average value is smaller than model-scale's. The frequency spectrum curves are also provided after fast Fourier transform. By analyzing the frequency spectrum data, it is easy to summarize that each component of the propeller bearing force have the same fluctuation frequency and the peak in BFP is maximum. What's more, each component of full-scale bearing force's fluctuation value is bigger than model-scale's except the bending moment coefficient about the Y-axis.