• Title/Summary/Keyword: Flowrate of refrigerant

Search Result 18, Processing Time 0.022 seconds

The Effects of the Refrigerant Charge on the Performance of an Air Conditioner with Capillary Tube Expansions (냉매충전량이 모세관 팽창장치를 가진 공기조화기의 성능에 미치는 영향)

  • 최은수;김종배
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.359-364
    • /
    • 2002
  • A popular type of residential air conditioner is the split system which has two separate units: indoor and outdoor units During field installation of the split system, the potential exists for not setting the charge exactly to the manufacturer´s specifications. The objective of this study is to investigate the effects of the refrigerant charge on the performance of the air conditioner. An air conditioner with capillary tube expansions was tested for various refrigerant charges. The results indicated that the more charge resulted in the more flowrate of the refrigerant. The flowrate of the refrigerant was one of the most important factors to understand the e(sects of the charge on the performance of the air conditioner with capillary tube expansions. Under-charge results in wide region of superheated vapor of the refrigerant in the evaporator, while over-charge results in high temperature of the liquid refrigerant in the evaporator.

A Study on the Characteristics of the Refrigerator Using a Refrigerant Injection Type Expansion Device (냉매분사식 팽창장치를 적용한 냉동기의 특성에 관한 연구)

  • 조병옥
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.925-931
    • /
    • 2000
  • Refrigerating ability of vapor compression refrigerator is decided by the harmonic work of it's components such as compressor, condenser, evaporator, expansion device, and so on. In this study, choosing refrigerant injectors as a new one of expansion device, temperature change of the cold room, ice freezing ability, and power consumption on flowrate of injector and refrigerant charging condition are evaluated experimentally. As the results of this study, it is verified that the spray injection type refrigeration system has some merits according to the flowrate and spray pattern of injector and charging quantum of refrigerant. And there are some design factors such as spray pattern and shape of spray chamber to utilize and fabricate this refrigerant injection type refrigerator.

  • PDF

Characteristics of Solar Desalination System Using Refrigerant-123 As a Heating Source (R123 열원 적용 증발식 담수 시스템 특성 연구)

  • Yun, Sang-Kook;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.33-38
    • /
    • 2010
  • The evaporative desalination system using solar thermal energy would be the efficient and attractive method to get fresh water from brine due to low carbon dioxide generation. In this research the solar desalination system as a heating source of refrigerant R123 in the evaporator was considered. The circulation of refrigerant in the evaporator can reduce the energy consumption of the system, because of using the latent heat of the refrigerant 123 instead of the sensible heat of present hot water. The system was comprised of the single-stage fresh water production unit on the capacity of 1ton/day with shell and tube type evaporator, heaters instead of solar collector to supply the proper heat to refrigerant, and refrigerant and brine circulation systems. Various operating flowrate and temperature ranges were varied in the experiments to get the optimum design data. The results showed that the optimum flow rate of brine feed rate to evaporator was 1.2Liter/min, and the yield of fresh water was increased as higher temperature of feed brine. It was confirmed that the circulation flowrate of heating source of refrigerant was decrease of one fifth of the present warm water system, and very efficient system for solar desalination.

Performance Characteristics of Refrigerant R170(Ethane) Refrigeration System Using Liquid-gas Heat Exchanger (액-가스 열교환기를 이용한 R170(에탄)용 냉동시스템의 성능 특성)

  • Ku, Hak-Keun
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.78-85
    • /
    • 2016
  • This paper considers the influence of internal heat exchangers to the efficiency of a refrigerating system using R170. These liquid-gas heat exchangers(internal or suction-line heat exchangers) can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analysis the performance characteristics of refrigeration system with internal heat exchanger. The influence of operating conditions, such as the mass flowrate of R170, inner diameter tube and length of internal heat exchanger, to optimal dimensions of the heat exchanger is also analyzed in the paper. The main results were summarized as follows : the mass flowrate of R170, inner diameter tube and length of internal heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative Capacity Index) of this system. Exception for the effect of inner diameter, the RCI of R170 with respect to refrigerant mass flowrate, the length and effectiveness of internal heat exchanger is about 2.1~3.3% higher than that of R13 at the same experimental conditions. With a thorough grasp of these effect, it is necessary to design the R170 compression refrigeration cycle using internal heat exchanger.

Study on the Adaptiveness of Using an Injector As an Expansion Device of Refrigerator (냉동기 팽창장치로서 인젝터 사용의 적합성에 관한 연구)

  • Cho, B.O.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.1-8
    • /
    • 2000
  • Spray as a liquid atomization technique has wide applications of combustion, painting, chemical, medical and agricultural purpose, and so on. Capillary tubes and expansion valves, as an expansion device of vapor compression type refrigerators, has been used from the early time. But there are some problems in practice, the former can't control refrigerant flowrate exactly and the later most of imported are expensive relatively and has some difficulties to install. Choosing an injector as a new concept of expansion device of refrigerator in this study to improve such troubles of the coming expansion device, the refrigerant spray behavior and refrigeration characteristics are evaluated experimentally. It is verified that the injector with a good function of refrigerant atomization plays a desirable role of refrigerant expansion in the actual refrigeration cycle.

  • PDF

Optimization of Nozzle Arrangement in a Liquid Direct Contact Cooling System : Constant Inlet Flowrate Analysis (액체식 직접 접촉 냉각장치의 노즐배열 최적화 : 정풍량 해석)

  • Kim Won-Nyun;Kim Seo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.402-409
    • /
    • 2006
  • For the design of a liquid direct contact cooling system, thermal and hydraulic analysis has been carried out. Well-known Zukauskas correlations are used to estimate the Nusselt number between the liquid refrigerant columns and the inlet airflow. The inlet air velocity is set at a typical value used in an actual showcase. For a constant column number, the best nozzle arrangement is determined for the maximum heat transfer. Heat transfer increases as the transverse pitch of the refrigerant column decreases. Among all the cases dealt with in the present study, the staggered arrangement with 140-columns of $14{\times}10$ shows the best thermal peformance and the expected temperature drop is $27.8^{\circ}C$. The effect of downstream refrigerant columns on the overall thermal performance is investigated as well.

Experimental Study on Compact type CO2 Gas Cooler(2) - Experiments and Predictions on Heat Flowrate and Pressure Drop - (CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(2) - 열유량과 압력강하에 관한 실험 및 예측 -)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.259-266
    • /
    • 2010
  • The heat flowrate and pressure dorp of $CO_2$ in a multi-tube-in-tube helical coil type gas cooler were predicted using LMTD method and compared with the experimental data. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], and the cooling pressure of gas cooler were from 8 to 10 [MPa], respectively. The LMTD method is used to predict the heat flowrate and pressure drop of supercritical $CO_2$ during in-tube cooling. The equations used by LMTD method were Gnielinski correlation for $CO_2$ and Dittus-Boelter correlation for coolant, respectively. The equation used to predict the pressure drop of $CO_2$ and coolant is Blasius correlation. In comparison of heat flowrate and pressure drop of $CO_2$ measured by experiment to that predicted by LMTD method, the experimental heat flowrate and pressure drop of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler shows a relatively good agreement with that predicted by LMTD method.

An Experiment on Evaporating Heat Transfer of HCFC-22 for Transport Refrigeration System (HCFC-22 냉매사용 차량냉동시스템의 증발 열전달에 관한 실험)

  • Oh, M.D.;Kim, S.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.166-174
    • /
    • 1994
  • An experimental study has been performed to identify the evaporation characteristics of HCFC-22 for transport refrigeration system. Heat transfer coefficients were measured in a horizontal, smooth evaporating tube with an inner diameter of 10.7mm and a length of 2.8m. The refrigerant was heated electrically by surface-wrapped heaters and uniform power is applied along the tube. The entire tube was divided into 7 sections. Surface temperatures of tube and refrigerant temperature in each test section were measured. Pressure drops in each section and the inlet pressure were also measured. The mass flowrate of the refrigerant was controlled and measured. A single tube evaporation test was conducted for different ranges of mass flux of refrigerant, heat flux of evaporator and condensing temperature of transport refrigeration system. The evaporation heat transfer coefficients of HCFC-22 were compared with predictions from the well known Chen's correlations. Averaged heat transfer coefficients in this experiment range from $2kW/m^2/^{\circ}C$ to $3kW/m^2/^{\circ}C$. Most of the experimental results differ from the predicted ones by less than ${\pm}30%$.

  • PDF

Performance Characteristics of Refrigeration System Using R744 as a Secondary Refrigerant (2차 냉매로 천연냉매 R744를 사용하는 냉동시스템의 성능 특성)

  • Yi, Wen-Bin;Jo, Hwan;Yoon, Jung-In;Choi, In-Soo;Son, Chang-Hyo
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.17-22
    • /
    • 2014
  • In this paper, the performance characteristics of R404 indirect refrigeration system using R744 as a secondary refrigerant were investigated experimentally to obtain a optimum design data for this system. First, for the constant experimental conditions, the COP of R404A indirect refrigeration system using R744 as secondary refrigerants decreases with respect to the increases in R404A condensation temperature and temperature difference in R744 cooler. And, the COP of indirect refrigeration system using R744 as secondary refrigerants decreases slightly with decreasing the mass flowrate of R744.

Experimental Study on Compact type CO2 Gas Cooler(1) - Heat Flowrate and Pressure Drop in a Multi-Tube-In-Tube Helical Coil Type Gas Cooler - (CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(1) -다중관식 헬리컬 코일형 가스냉각기내 CO2의 열유량과 압력강하-)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.30-36
    • /
    • 2010
  • The heat flowrate and pressure drop of $CO_2$ in a multi-tube-in-tube helical coil type gas cooler were investigated experimentally. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], respectively and the cooling pressure of gas cooler were from 8 to 10 [MPa]. The heat flowrate of $CO_2$ in the test section is increased with the increase in mass flowrate of coolant, the cooling pressure and mass flowrate of $CO_2$. The pressure drop of $CO_2$ is decreased with the decrease in mass flowrate of coolant and $CO_2$, but decreased with increase in cooling pressure of $CO_2$. The heat flowrate of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler is greatly higher than that of $CO_2$ in the double pipe type gas cooler, while the pressure drop of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler is greatly lower than that of $CO_2$ in the double pipe type gas cooler. Therefore, in case of the application of $CO_2$ at the multi-tube-in-tube helical coil type gas cooler, it is expected to carry out the high-efficiency, high-performance and compactness of gas cooler.