• Title/Summary/Keyword: Flowmeter Proving

Search Result 3, Processing Time 0.039 seconds

Study on Flowmeter Proving Errors of a Small Volume Prover (소형 푸루버의 유량계 검증 오차 연구)

  • 백종승;임기원;최용문
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.259-266
    • /
    • 1990
  • Leaks at the piston seal and the by-pass port of a small volume prover have relatively large influence on the proving accuracy in comparison with a conventional ball prover. The pulse interpolator, which is to increase the discrimination, is affected by the characteristic of the flowmeter signal. In this study, a small volume prover of the double cylinder type was designed in order to study the pulse interpolation error as well as the leak error. The basic volume of the prover determined by a water draw method was about 9.68L. Experimental results revealed that interpolation data attained by the repeated piston pass for turbine meters at a fixed flowrate may be treated effectively by applying a statistical method. It was possible to limit the pulse interpolation error less than .+-. 0.02% at the 95% confidence level. However, in the case of the bulk meter, if failed to achieve the required repeatability level because of the pulse characteristics. The basic volume change appeared to be independent of the piston velocity within the .+-. 0.05% of tolerance.

CFD-based Design and Analysis of the Ventilation of an Electric Generator Model, Validated with Experiments

  • Jamshidi, Hamed;Nilsson, Hakan;Chernoray, Valery
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.2
    • /
    • pp.113-123
    • /
    • 2015
  • The efficiency of the ventilation system is a key point for durable and reliable electric generators. The design of such system requires a detailed understanding of the air flow in the generator. Computational fluid dynamics (CFD) has the potential to resolve the lack of information in this field. The present work analyses the air flow inside a generator model. The model is designed using a CFD-based approach, and manufactured by taking into consideration the experimental and numerical requirements and limitations. The emphasis is on the possibility to accurately predict and experimentally measure the flow distribution inside the stator channels. A major part of the work is focused on the design of an intake and a fan that gives an evenly distributed flow with a high flow rate. The intake also serves as an accurate flowmeter. Experimental results are presented, of the total volume flow rate, the total pressure and velocity distributions. Steady-state CFD simulations are performed using the FOAM-extend CFD toolbox. The simulations are based on the multiple rotating reference frames method. The results from the frozen rotor and mixing plane rotor-stator coupling approaches are compared. It is shown that the fan design provides a sufficient flow rate for the stator channels, which is not the case without the fan or with a previous fan design. The detailed experimental and numerical results show an excellent agreement, proving that the results reliable.

A Study on The Velocity Distribution in Closed Conduit by Using The Entropy Concept (엔트로피 개념을 이용한 관수로내의 유속분포에 관한 연구)

  • Choo, Tai Ho;Ok, Chi Youl;Kim, Jin Won;Maeng, Seung Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.357-363
    • /
    • 2009
  • When yields the mean velocity of the closed conduit which is used generally, it is available to use Darcy Weisbach Friction Loss Head equation. But, it is inconvenient very because Friction Loss coefficient f is the function of Reynolds Number and Relative roughness (${\varepsilon}$/d). So, it is demanded more convenient equation to estimate. In order to prove the reliability and an accuracy of Chiu's velocity equation from the research which sees hereupon, proved agreement very well about measured velocity measurement data by using Laser velocimeter which is a non-insertion velocity measuring equipment from the closed conduit (Laser Doppler Velocimeter: LDV) and an insertion velocity measuring equipment and the Pitot tube which is a supersonic flow meter (Transit-Time Flowmeters). By proving theoretical linear-relation between maximum velocity and mean velocity in laboratory flume without increase and decrease of discharge, the equilibrium state of velocity in the closed conduit which reachs to equilibrium state corresponding to entropy parameter M value has a trend maintaining consistently this state. If entropy M value which is representing one section is determinated, mean velocity can be gotten only by measuring the velocity in the point appearing the maximum velocity. So, it has been proved to estimate simply discharge and it indicates that this method can be a theoretical way, which is the most important in the future, when designing, managing and operating the closed conduit.