• Title/Summary/Keyword: Flowing Film

Search Result 118, Processing Time 0.026 seconds

The Effect of Surrounding Gas Flow on the Heat Transfer of the Falling Film Flowing Down the Outside of a Vertical Tube (수직원관 외부 유하액막 열전달에 주변 기체유동이 미치는 영향)

  • 권경민;정시영;김병주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.996-1003
    • /
    • 2002
  • Heat transfer characteristics were investigated for the falling film flowing down the outside of an electrically heated vertical tube. Water was used for the falling film, and its Reynolds number was varied in the range of 70~500. Because water is heated and evaporated as it flows down, both sensible and latent heat transfer should be considered. The effect of the surrounding air movement was investigated by changing the direction of the air injection; without air injection, parallel-flow, and counter-flow. For all cases, sensible teat transfer rate was almost linearly increased with the increasing film flow rate. It was found that the film heat transfer coefficient was hardly influenced by the parallel air flow. However, the counter-flow of air reduced the heat transfer coefficient, which might be caused by the uneven distribution or flooding of the film. At high heat flux, a sudden change of the film heat transfer coefficient was detected as the film flow rate reached the transition value. It is supposed that this phenomenon was caused by the change in the film flow pattern.

A Study on Chemical Washing Mechanism by Flowing Film of Detergent/Water Solution (흐르는 세제혼합액막에 의한 화학적 세척 메커니즘에 대한 연구)

  • Jang, Choong-Hyo;Park, Chan-Youl;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.499-506
    • /
    • 2007
  • This study aims to propose evaluation methods of chemical washing performance and estimate the washing capability by flowing detergent/water solution for application to home appliances such as dishwashers. Standard pollutant is stearic acid. A numerical study is also tried using a SIMPLER code. Preliminary experiments are performed by varying the concentration and temperature of the solution. From the pre-experiments, 10 minute pre-curing time is found to be necessary to remove the stearic acid. Stoichiometric ratio and detergent consumption coefficient of reaction between the detergent and stearic are estimated following a proposed method. Washing experiments of pollutant to compare with the numerical results are performed. The relative errors between the experimental and the numerical results with pre-curing time included are less than 7%. In conclusion, important mechanisms of chemical washing are revealed and methods of predicting washing performance are well established.

Pilot-Scale Testing of a Vibrating Electrostatic Separator for Fly Ash Decarbonization

  • Yoon, Roe-Hoan;Eric Yan;Han, Oh-Hyung;Park, Byung-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.644-649
    • /
    • 2001
  • A new electrostatic separator has been developed for the removal of unburned carbon from fly ash. In this separator, a flowing film of fly ash is created on the surface of a vibrating electrode. Conducting particles such as unburned carbon acquire electrostatic charges and jump out of the flowing film so that they can be removed from the non-conducting fly ash particles moving forward. The new separator has been tested successfully using a pilot-scale test unit at 0.5 tons/hr capacity. Based on the successful test results, a larger unit is being constructed at the present time.

  • PDF

Effects of Fuel Injection Strategies on Wall Film Formation at Port Injection Gasoline Engine (포트분사식 가솔린엔진에서 연료분사전략이 Wall Film 생성에 미치는 영향 연구)

  • Lee, Ziyoung;Choi, Jonghui;Jang, Jihwan;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.36-41
    • /
    • 2018
  • Fuel wall film effects power output and cycle deviation by changing the amount of fuel flowing into cylinder in PFI gasoline engines. Reduction of wall film can reduce fuel consumption and improve combustion stability. In this research, the effects of injection strategies including injection pressure and dual injection system is investigated for reducing wall film formation. The CONVERGE software is used for numerical analysis tool and O'Rourke film splash model was used for wall film prediction model. Compared with the reference case wall film decreased with increase of injection pressures, and the film formation reduced when the dual injection system was used.

Effects of interfacial shear stress on laminar-wavy film flow (층류-파동 액막 유동에 대한 계면 전단응력의 영향)

  • Kim, Byeong-Ju;Jeong, Eun-Su;Kim, Jeong-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.992-1000
    • /
    • 1998
  • In the present study the behavior of laminar-wavy film flowing down a vertical plate was studied analytically. The effects of film Reynolds number and interfacial shear stress on the mean film thickness, wave amplitude, wave length, and wave celerity were analysed. The anayltical results on the periodic-wave falling film showed good agreements with experimental data for Re < 100. As the film Reynolds number increased, mean film thickness, wave amplitude, and wave celerity increased, but wave length decreased. Depending on the direction of interfacial shear stress, the shape of wavy interface was disturbed significantly, especially for the intermediate-wave. As the interfacial shear stress increased, for the periodic-wave film, wave amplitude and wave celerity increased, but mean film thickness and wave length decreased.

Effect of Non-Uniform Mixture on Cycle Fluctuation of Multi-Cylinder Spark Ignition Engine(I) (다기통 전기점화기관의 혼합기 불균일화가 사이클 변동에 미치는 영향 (I))

  • 송재학;이용길;박경석;양옥룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1736-1743
    • /
    • 1992
  • The combustion in the cylinder of spark ignition engine is completed after the delayed time that the liquid film fuel is vapourized as flowing into the combustion chamber. It is necessary to enhance the homogeneity of mixture and the combustion phenomenon in order to improve the heat efficiency and the emission characteristics of spark ignition engine. The main purpose of this paper is to manufacture a combustion analyzing system and examine closely the influence of non-uniformity due to the liquid film fuel flowing in the intake manifold on the combustion characteristics by using a 4 stroke multi- cylinder spark ignition engine. Moreover, with each cylinder, the interpretation of combustion characteristics by indicator diagram and the concentration of exhaust gas were investigated.

Film Flow Analysis for a Vertical Evaporating Tube with Inner Evaporation and Outer Condensation (내부와 외부에서 증발과 응축이 발생하는 수직관에 대한 유동 해석)

  • Park, Il-Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.621-628
    • /
    • 2008
  • A numerical study for the flow, heat and mass transfer characteristics of the evaporating tube with the films flowing down on both the inside and outside tube walls has been carried out. The condensation occurs along the outside wall while the evaporation occurs at the free surface of the inside film. The transport equations for momentum and energy are parabolized by the boundary-layer approximation and solved by using the marching technique. The calculation domain of 2 film flow regions (evaporating and condensation films at the inside and outside tube wall respectively) and tube wall is solved simultaneously. The coupling technique for the problem with the 3 different regions and the 2 interfaces of them has been developed to calculate the temperature field. The velocity and temperature fields and the amount of the condensed and evaporated mass as well as the position where the evaporating film is completely dried out are successfully predicted for various inside pressures and inside film inlet flow rates.

Effects of Heat Treatments on the Microstructure of YBCO Films Prepared by DCA-MOD Method (DCA-MOD 방법으로 제조된 YBCO 박막의 미세조직에 미치는 열처리 효과)

  • Kim, Byeong-Joo;Kim, Hye-Jin;Cho, Han-Woo;Yu, Seok-Koo;Ryu, Jung-Hee;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.96-101
    • /
    • 2007
  • [ $YBa_2Cu_3O_{7-{\delta}}$ ] films have been prepared on $LaAlO_3$ (100) single-crystal substrates by a metalorganic deposition using dichloroacetate precursors (DCA-MOD). Calcination conditions were varied in order to optimize the microstructure and the superconducting properties of YBCO film. Coated films were calcined at various temperatures ranging from $400{\sim}700^{\circ}C$ in flowing humid oxygen atmosphere. Ramping rate to calcination tempertures was $2.22^{\circ}C/min$. Conversion heat treatment was performed at $800^{\circ}C$ for 2 h in flowing Ar gas containing 1000 ppm oxygen with a humidity of 9.45%. Observations of surface and cross sectional SEM microstructure showed that the particle size in the calcined film increased in the range of 100-200 nm with heating rate and the calcination temperature. SEM EDS analysis showed that 13 a/o of chlorine was contained in the calcined film. It was also observed that the porosity increased with the heating rate and temperature. Porous microstructure was developed when YBCO films were prepared using porous calcined film. Dense microstructure and high $J_c$ over $1\;MA/cm^2$ was obtained when calcination was carried out at the temperature of $500^{\circ}C$ with a heating rate of $2.22^{\circ}C/min$.

  • PDF

Visualization of rupturing of rotating films (회전 원판 위 액막 유동 찢김 가시화)

  • Dong Ju Kim;Daegyoum Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.28-33
    • /
    • 2024
  • We visualized the rupturing of liquid films flowing over a disk rotating with large angular velocity. A setup of high speed imaging for liquid flows on dark and reflective surfaces are suggested. From the result, rivulet structures are revealed to be strongly governed by three-dimensional surface structures developed in the film flow. Additionally, unique flow structures including the rivulet sliding and internal meandering are investigated. Generation mechanism of such structures are discussed in terms of the dynamic contact angle theory.

Development of Real Time Thickness Measurement System of Thin Film for 12" Wafer Spin Etcher (12" 웨이퍼 Spin etcher용 실시간 박막두께 측정장치의 개발)

  • 김노유;서학석
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.2
    • /
    • pp.9-15
    • /
    • 2003
  • This paper proposes a thickness measurement method of silicon-oxide and poly-silicon film deposited on 12" silicon wafer for spin etcher. Halogen lamp is used as a light source for generating a wide-band spectrum, which is guided and focused on the wafer surface through a optical fiber cable. Interference signal from the film is detected by optical sensor to determine the thickness of the film using spectrum analysis and several signal processing techniques including curve-fitting and adaptive filtering. Test wafers with three kinds of priori-known films, polysilicon(300 nm), silicon-oxide(500 nm) and silicon-oxide(600 nm), are measured while the wafer is spinning at 20 Hz and DI water flowing on the wafer surface. From experiment results the algorithm presented in the paper is proved to be effective with accuracy of maximum 0.8% error.rror.

  • PDF