• Title/Summary/Keyword: FlowFriction

Search Result 1,225, Processing Time 0.027 seconds

Friction Welding Analysis of Welding Part Shape with Flow Gallery by Friction Welding (마찰용접에 의해 유동부를 갖는 용접부 형상의 마찰용접해석)

  • Yeom S. H.;Nam K. O.;Yoo Y. S.;Hong S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.109-112
    • /
    • 2005
  • Friction welding is welding method to use frictional heat of two material. A defect of friction welding is that create flash. The flash is part that must have cut after welding finished. But the welding part with flow gallery by friction welding can't cut flash. Therefore the welding part with flow gallery was designed with no effect in flow. In this research, decide the welding shape parameter of welding part with flow gallery and do friction welding analysis. In friction welding analysis, must input necessary S-S curve, friction coefficient by temperature change, upset pressure, RPM etc. According to analysis result, decided the optimal shape of welding part with no effect in flow.

  • PDF

LBM simulation on friction and mass flow analysis in a rough microchannel

  • Taher, M.A.;Kim, H.D.;Lee, Y.W.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1237-1243
    • /
    • 2014
  • The aim of the present paper is to analyze the friction and mass flow in a rough microchannel using Lattice Boltzmann Method (LBM). The LBM is a kinetic method based on the particle distribution function, so it can be fruitfully used to study the flow dependence on Knudsen number including slip velocity, pressure drop in rough microchannel. The surface roughness elements are taken to be considered as a series of circular shaped riblets throughout the channel with relative roughness height up to a maximum 10% of the channel height. The friction coefficients in terms of Poiseuille number (Pn), mass flow rate and the flow behaviors have been discussed in order to study the effect of surface roughness in the slip flow regime at Knudsen number (Kn), ranging from 0.01 to 0.10. It is seen that the friction factor and the flow behaviors in a rough microchannel strongly depend on the rarefaction effect and the relative roughness height. The friction factor in a rough microchannel is higher than that in smooth channel but the mass flow rate is lower than that of smooth channel. Moreover, it is seen that the friction factor increased with relative roughness height but decreased with increasing the Kundsen number (Kn) whereas the mass flow rate is decreased with increasing both of surface roughness height and Knudsen number.

Experimental study on the helical flow field in a concentric annulus with rotating inner cylinders (안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적연구)

  • Hwang, Young-Kyu;Kim, Young-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.631-636
    • /
    • 2000
  • The experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow have been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.

  • PDF

Effect of Friction Force on the Dynamic Characteristics of a Flow Divider Valve (Flow Divider Valve의 동특성에 미치는 마찰력의 영향)

  • 박태조;황태영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.198-203
    • /
    • 2000
  • In this paper, a numerical analysis is carried out to show the effect of friction farce on the dynamic characteristics of a flow divider valve. The continuity equations and the equation of motion fur spool are numerically solved. The viscous friction force acting on the spool is considered analyzing the Reynolds equation which governs the viscous flow in the clearance gap between the spool and sleeve. Dynamic characteristics are highly affected by the viscous friction farce whose magnitude is relatively small compare with other fluid forces. Therefore present theoretical formulation and numerical scheme can be used generally in designing and performance evaluation of all the hydraulic spool valve.

  • PDF

A Study on the Helical Flow of Newtonian and Non-Newtonian Fluid

  • Woo, Nam-Sub;Hwang, Young-Kyu;Kim, Young-Ju
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • This study concerns the characteristics of helical flow in a concentric and eccentric annulus with a diameter ratio of 0.52 and 0.9, whose outer cylinders are stationary and inner ones are rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and 0.2% aqueous of sodium carboxymethyl cellulose (CMC), respectively, when the inner cylinder rotates at the speed of 0-500 rpm. The effect of rotation on the skin friction is significantly dependent on the flow regime. In all flow regimes, the skin friction coefficient is increased by the inner cylinder rotation. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, whereas it becomes smaller as Re increases for the transitional flow regime and, then, it gradually approach to zero for the turbulent flow regime.

Bottom Friction of Surface Waves and Current Flow (천해파와 해류에 의한 해저면 마찰력)

  • 유동훈;김지웅
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.130-138
    • /
    • 2000
  • The friction factor equation of open channel flow is developed by using Prandtl's mixing length theory and considering the flow characteristics of smooth or rough turbulent flow. BYO model considers vertical velocity profile for the (:omputation of bottom friction of surface waves and current flow. The model computes the mean bottom friction of combined wave-current flow by the vectorial summation of wave velocity and current velocity at Bijker point. The near bottom flow is discriminated by three flow regimes; smooth, transitional and rough turbulent flow. The model, BYO, has been further refined considering the combination of smooth turbulent flow and rough turbulent flow.

  • PDF

The Characteristic of Friction-Factor on Honeycomb Surfaces (Part II : Friction-Factor Jump Phenomenon) (허니콤 표면의 마찰계수 특성에 관한 연구 (Part 2 : 마찰계수 급상승현상에 관한 고찰))

  • 하태웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1439-1447
    • /
    • 1994
  • Test results of friction-factor for the flow of air in a narrow channel lined with various honeycomb geometries show that, generally, the friction-factor is nearly constant or slightly decreases as the Reynolds number(or Mach number) increases, a characteristic common to turbulent flow in pipes. However, in some test geometries this trend is remarkably different. The friction factor dramatically drops and then rises as the Mach number increases. This phenomenon can be characterized as a "friction-factor jump." Further investigations of the acoustic spectrum indicate that the "friction-factor jump" phenomenon is accompanied by an onset of a normal mode resonance excited coherent flow fluctuation structure, which occurs at Reynolds number of the order of $10^4$. New empirical friction-factor model for "friction-factor jump" cases is developed as a function of Mach number and local pressure.ach number and local pressure.

Determination of Flow Stress and Friction Factor by the Ring Compression Test (II) (링압축실험에 의한 유동응력 및 마찰인자의 결정 (II))

  • 최영민;김낙수
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.215-228
    • /
    • 1994
  • The purpose of this paper is to pursue a general method to determine both the flow stress of a material and the friction factor by ring compression test. The materials are assumed to obey the expanded n-power hardening rule including the strain-rate effect. Ring compression is simulated by the rigid-plastic finite element method to obtain the database used in determining the flow stress and friction factor. The Simulation is conducted for various strain hardening exponent, strain-rate sensitivity, friction factor, and compressing speed, as variables. It is assumed that the friction factor is constant during the compression process. To evaluate the compatibility of the database, experiments are carried out at room and evaluated temperature using specimens of aluminum 6061-T6 under dry and grease lubrication condition. It is shown that the proposed test method is useful and easy to use in determining the flow stress and the friction factor.

  • PDF

Velocity and Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator (II) - Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator - (스털링기관 재생기내의 작동유체 유속 및 마찰저항 특성(II) - 작동유체 유동마찰저항 특성 -)

  • Kim, T.H.;Choi, C.R.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The output of the Stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide basic data for the design of regenerator matrix, characteristics of flow friction loss were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, two different wire screens were used. The results are summarized as follows; 1. With the wire screen of No. 50 as regenerator matrices, pressure drop of working fluid of the oscillating flow is shown as 3 times higher than that of one directional flow, not too much influenced by the number of packed meshes. 2. With the wire screen of No. 100 as regenerator matrices, pressure drop of working fluid of the oscillating flow is shown as 2.5 times on the average higher than that of one directional flow, not too much influenced by the number of packed meshes. 3. Under one directional flow which used regenerator matrices with both 200, 240, and 280 wire screens of No. 50 and 320, 370, and 420 wire screens of No. 100, the relationship between the friction factor and Reynold No. is shown as the following formula. $$f=\frac{0.00326639}{Re\iota}-1.29106{\times}10^{-4}$$ 4. Under oscillating flow which used regenerator matrices with both 200, 240, and 280 wire screens of No. 50 and 320, 370, and 420 wire screens of No. 100, the relationship between the friction factor and Reynold No. is shown as the following formula. $$f_r=\frac{0.000918567}{Re\iota}+1.86101{\times}10^{-5}$$ 5. The pressure drop is shown as high in proportion as the number of meshes has been higher, and the number of packed wire screens as matrices increases.

Friction Welding Analysis of Welding Part Shape with Flow Gallery Considered Fluid Flow (유체 유동을 고려한 유동부를 갖는 용접부 형상의 마찰용접 해석)

  • Yeom, Sung-Ho;Kim, Bum-Nyun;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2007
  • Friction welding is a welding method to use frictional heat of a couple of materials. In this paper object is that design the welding part shape with the flow gallery part which there is no effect in flow. Decided the welding part design parameter and doing the friction welding analysis used the rigid-plastic FEM program DEFORM-2D. To do friction welding analysis must input necessary flow stress data, friction coefficient by temperature change, upset pressure and Revolution per minute etc. According to analysis result, it decided the optimal shape of welding part with no effect in flow.