• Title/Summary/Keyword: Flow-rate Coefficient

Search Result 933, Processing Time 0.029 seconds

Mass transfer characteristics of benzene in nonpolar solution (비극성용매 내의 벤젠 물질전달특성)

  • 최성우;김혜진;박문기
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.605-610
    • /
    • 2002
  • The absorption of benzene in nonpolar solution was studied in a laboratory-scale of bubble column varying of gas flow rates and gas-to-liquid ratios. A bubble column had a 0.8∼l$\times$10$\^$-3/ m$^3$ total volume (height 1500 mm, diameter 50 mm). Solution analysis was performed by GC-FID and GC-MSD. The objectives of this research were to select the best absorption fluid and to evaluate the mass transfer characteristics under specific conditions of each absorption. The results of this research were follow as: First, the heat transfer fluid is more efficient than the other nonpolar solution in removing VOC. Second, The benzene removal efficiency improved according to an increasing rate of gas flow. Also, volumetric mass transfer rate of column can be enhanced by increasing gas flow rate. Finally, the relation of gas flow rates, liquid amount, and volumetric mass transfer coefficient was obtained as follows. K$\_$y/a: 0.5906(V$\_$g//L)$\^$0.7611/ The following correlation of mass transfer coefficient and efficiency was proposed. v= 0.06078 K$\_$y/a$\^$0.2444/.

Numerical Analysis on the Heat Transfer Characteristics of HDPE Pipe with the Variation of Geometries for Ground Loop Heat Exchangers (지중열교환기의 고밀도폴리에틸렌 배관 형상에 따른 열전달 성능 특성에 대한 수치해석적 연구)

  • Mensah, Kwesi;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.33-39
    • /
    • 2016
  • A ground source heat pump (GSHP) system is recommended as a heating and cooling system to solve the pending energy problem in the field of air conditioning, because it has the highest efficiency. However, higher initial construction cost works as a barrier to the promotion and dissemination of GSHP system. In this study, numerical analysis on the characteristics of high density polyethylene (HDPE) pipe with spiral inside was executed. The heat transfer and flow characteristics of it were compared with those of a conventional smooth HDPE pipe. The heat transfer coefficient and pressure drop of the spiral HDPE pipe were higher than those of the smooth HDPE pipes at the same fluid flow rate. By decreasing the flow rate, the spiral HDPE pipe represented similar values of heat transfer coefficient and pressure drop to the smooth HDPE pipe. The lower flow rate of the spiral HDPE pipe comparing with it of the smooth HDPE pipe is estimated to reduce the length of the ground loop heat exchanger.

Development of a Lift Correction Method for Shear Flow Effects in BEM Theory (BEM 이론을 위한 전단유동 효과 보정 기법 개발)

  • Lee, Kyung Seh;Jung, Chin Hwa;Park, Hyun Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • In this study, the effects of shear flows around a 2-dimensional airfoil, S809 on its aerodynamic characteristics were analyzed by CFD simulations. Various parameters including reference inflow velocity, shear rate, angle of attack, and cord length of the airfoil were examined. From the simulation results, several important characteristics were found. Shear rate in a flow makes some changes in the lift coefficient depending on its sign and magnitude but angle of attack does not have a distinguishable influence. Cord length and reference inflow also cause proportional and inversely proportional changes in lift coefficient, respectively. We adopted an analytic expression for the lift coefficient from the thin airfoil theory and proposed a modified form applicable to the traditional load analysis procedure based on the blade element momentum theory. Some preliminary results applied to an well known load simulation software, FAST, are presented.

  • PDF

Flow rate Measurement Using Segmental Wedge as a Restriction Device for Differential Pressure (Segmental Wedge를 이용한 차압식 유량측정 방법)

  • Yoon J.Y.;Sung N.W.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.3 s.36
    • /
    • pp.22-28
    • /
    • 2006
  • The discharge coefficient in segmental wedge haying ninety degrees yeller angle for the five kinds of opening ratio with differential pressure taps located at both upstream and downstream of one diameter of pipe was measured. Main purpose of this work is placed on specifying the characteristic of discharge coefficient of a segmental wedge used as a primary element of flow metering devices, and suggestion for the fixed location of pressure taps useful. Although the range of the opening ratio over this work is more expanded than previous studies. The opening ratios of segmental wedge, namely 0.3, 0.4, 0.5, 0.6 and 0.7 were investigated. The Reynolds number based on the spool inside diameter ranges from 12,000 to 380,000.

A Direct Injection-mixing Total-flow-control Boom Sprayer System (주입식 총유량 자동제어방식 분관 방제기의 개발)

  • 구영모
    • Journal of Biosystems Engineering
    • /
    • v.21 no.2
    • /
    • pp.155-166
    • /
    • 1996
  • A direct injection sprayer was designed using the concepts of injection mixing and total flow control, flowrate-based system compensating for the variation of forwarding speed. A metered rate, proportionally to the actual diluent flow rate, of a tracer chemical was injected directly into the diluent stream. The injection of chemical may improve the precision and safety of chemical application process. The control system was evaluated for the variables of the control interval, tolerances and sensitivities of flow regulation valve and injection pump. Performance of the system was assessed as that the response time of flow rate, response time of injection rate, absolute steady state error, and the coefficient of variance(C.V.) of concentration were 8.5 and -0.53 seconds, 0.067 lpm(0.8%) and 3.15%, respectively, at optimal parameters of control interval of 1.0 sec, fast sensitivity of flow regulation valve, medium sensitivity of injection pump and medium tolerance of flow rate. Performance of the system can be improved by increasing the sensitivity of flow regulating valve and employing a high resolution velocimeter, such as Doppler radar.

  • PDF

STUDY ON CALCULATION OF FLOW COEFFICIENT BY CFD FOR VALVE IN NUCLEAR POWER PLANT (전산유체역학을 활용한 원전용 밸브의 유량계수 산출에 대한 연구)

  • Kim, J.H.;Lee, J.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.54-60
    • /
    • 2016
  • The valve used in nuclear power plant must be qualified but the limitation of the test facility leads to use the numerical analysis. The flow coefficient is calculated with the consideration of the pressure, velocity and geometry. And the flow coefficient is the important physical property which is prepared using experiment or analysis by valve manufacturer. In this study, the analysis model was made according to ISA 75.02.01 and the mass flow rate and pressure drop ratio was calculated. The model of the expansion factor was applied to the simulation result and the pressure drop ratio at the start of the choked flow in the valve was found. With the simulation result, the consideration was performed that the expansion factor is the important physical property to the system engineer in addition to the flow coefficient.

Analytical Study on Unsteady Flow Characteristics of Urea-SCR Single Hole Injector depend on Nozzle Shape Change (Urea-SCR 단홀 Injector 노즐형상 변화에 따른 비정상유동특성의 해석적 연구)

  • Hwang, Jun Hwan;Park, Sung-Young
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.105-113
    • /
    • 2019
  • In this paper, a study of Urea-SCR System for Dosing Injector for responding to enhanced environmental regulations has been conducted. There is a limit to the experimental approach due to the structural characteristics of the injector. In order to overcome this problem, The analysis was performed assuming unsteady turbulent flow through computational fluid analysis and the internal flow characteristics of the injector were analyzed. By changing the nozzle shape of the injector, the performance factors of the swirl injector by shape were selected and compared. The design parameters were modified by changing the diameter of the nozzle at a constant ratio compared to the base model. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. The Conv. model to which the taper was applied showed the dominance in mass flow rate, discharge coefficient and swirl because of the smooth fluid flow by shape. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. As a result of the comparison coefficient derivation with those performance parameters for comparing the performance of the model-specific injector, the Conv-140 model with the nozzle diameter expanded by 140% showed the best value of the comparison coefficient.

A study on flow coefficient evaluation by shape change of butterfly valve (Grooved butterfly valve의 형상 변화에 따른 용량계수 평가에 관한 연구)

  • Lee, Jung-Won;Shin, Bong-Cheol;Cho, Yong-Kyu;Cho, Myeong-Woo;Lee, Kang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4937-4943
    • /
    • 2012
  • Butterfly valves have been used to control the flow rate of various fluids in many industries because it have unique manageability compare to other valves. The flow rate passing through the butterfly valves can be controlled according to the coefficient of capacity calculated by disk angle change. In this study, flow analysis by 3D modeling was performed to derive the coefficient of capacity to evaluate and improve newly developed butterfly valves. Also, required measurement system was established to verify the performance of the valves, and to compare with the calculated results.

Effect of Swirl Flow Disturbance on Uncertainty of Flow Rate Measurement by Venturi (선회유동 교란에 따른 벤투리 유량측정의 불확실성 해석)

  • Lee, Jung-Ho;Yoon, Seok-Ho;Yu, Cheong-Hwan;Park, Sang-Jin;Chung, Chang-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.6
    • /
    • pp.18-25
    • /
    • 2009
  • Venturi has long been an attractive method of measuring flow rate in a variety of engineering applications since pressure loss is relatively small compared with other measuring methods. The current study focuses on making detailed uncertainty estimations as the upstream flow disturbance affects uncertainty levels of the flow rate measurement. Upstream flow disturbance can be determined by 9 different swirl generators. Measurement uncertainty of flow rate has been estimated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard. The results of flow rate uncertainty analysis show that the case with systematic error has higher than that without systematic error. Especially the result with systematic error exhibits that the uncertainty of flow rate was gradually increased by swirl flow disturbance. The uncertainty of flow rate measurement can be mainly affected by differential pressure and discharge coefficient. Flow disturbance can be also reduced by increasing of the upstream straight length of Venturi.

Optimal parameter derivation for Muskingum method in consideration of lateral inflow and travel time (측방유입유량 및 유하시간을 고려한 Muskingum 최적 매개변수 도출)

  • Kim, Sang Ho;Kim, Ji-sung;Lee, Chang Hee
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.827-836
    • /
    • 2017
  • The most important parameters of the Muskingum method, widely used in hydrologic river routing, are the storage coefficient and the weighting factor. The Muskingum method does not consider the lateral inflow from the upstream to the downstream, but the lateral inflow actually occurs due to the rainfall on the watershed. As a result, it is very difficult to estimate the storage coefficient and the weighting factor by using the actual data of upstream and downstream. In this study, the flow without the lateral inflow was calculated from the river flow through the hydraulic flood routing by using the HEC-RAS one-dimensional unsteady flow model, and the method of the storage coefficient and the weighting factor calculation is presented. Considering that the storage coefficient relates to the travel time, the empirical travel time formulas used in the establishment of the domestic river basin plan were applied as the storage coefficient, and the simulation results were compared and analyzed. Finally, we have developed a formula for calculating the travel time considering the flow rate, and proposed a method to perform flood routing by updating the travel time according to the inflow change. The rise and fall process of the flow rate, the peak flow rate, and the peak time are well simulated when the travel time in consideration of the flow rate is applied as the storage coefficient.