• Title/Summary/Keyword: Flow-rate Coefficient

Search Result 933, Processing Time 0.031 seconds

Performance Analysis of a Heat Pump Using Refrigerant Mixtures (II) (혼합냉매를 사용한 열펌프의 성능해석 (II))

  • Kim, M.S.;Kim, T.S.;Won, S.P.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.3
    • /
    • pp.218-225
    • /
    • 1990
  • Studies on the performance of a heat pump using non-azeotropic refrigerant mixtures are done. In order to estimate the thermodynamic properties for the selected non-azeotropic refrigerant mixtures including R22/R152a, R22/R142b, R22/R114 and R13B1/R152a, Peng-Robinson equation of state is adopted. The pressure-enthalpy diagram and the temperature-entropy diagram are plotted for each refrigerant mixture. Considerations on the capacity modulation for the heat pump system using refrigerant mixtures are taken into. Results show that when the heating load varies, the possibility for the capacity modulation is found in the heat pump system using a compressor with constant volume flow rate. Under a constant heating capacity condition in the heat pump system, the coefficient of performance increases when the refrigerant mixtures are used. The volume flow rate decreases as the mass fraction of lower boiler increases in this case.

  • PDF

A Study on the Cooling Characteristics of the Helical Type Cooling-Jacket of the Built-in Motor Spindle according to the Flow Rate (모터 내장형 주축계의 나선형 냉각 자켓의 유량에 따른 냉각 특성)

  • 김태원;김수태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.691-696
    • /
    • 2000
  • Cooling characteristics of cooling jacket for spindle system with built-in motor are studied. Three dimensional model was selected for the analysis of the helical-type cooling jacket. This model includes the estimation on the amount of heat generation from bearing and built-in motor and the thermal characteristic values such as heat flux on the boundary. The temperature distributions are analyzed and the cooling by Nusselt number and total heat transfer coefficient. Numerical results show that stream-wise cross section area and flow rate are important factors for cooling characteristics of cooling jacket.

  • PDF

Modelling of an Automotive Block Type Thermostatic Expansion Valve (자동차용 블록식 온도감응 팽창밸브의 모델링)

  • Won, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.251-258
    • /
    • 2011
  • The objective of this study is to propose two empirical correlations to predict the mass flow rate through an automotive block type thermostatic expansion valve and then to evaluate the correlations. The first correlation is deduced by modifying the basic equation of the orifice meter for the mass flow rate and the second correlation is deduced by using the Buckingham's ${\pi}$ theorem. The first correlation showed very good agreement on the measured data for R134a, given by Monforte. Average relative deviation and standard deviation of it are 2.5% and 1.6%, respectively. The second correlation agreed on the same measured data with a little greater deviations. The two correlations may apply to common expansion valves which have different geometrical sizes of the same shape.

An Experimental Study on the Performance of a Brazed Plate Heat Exchanger (용접식 판형 열교환기의 성능에 관한 실험적 연구)

  • 김종하;권오경;윤재호;이창식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.83-90
    • /
    • 2002
  • An experimental study on the performance evaluation of a brazed plate heat exchanger with 10USRT of normal cooling capacity has been carried out. In the present study, a brazed plate heat exchanger was tested at a chevron angle $25^{\circ}$with refrigerant R-22. Refrigerant mass flux was ranged from 23 to 58 kg/$m^2$s in condensation, and from 22 to 53 kg/$m^2$s in evaporation. The heat transfer coefficients and pressure drops are increased as the mass flux increases. The water side pressure drop is increased as the cooling water flow rate and chilled water flow rate increase, while mass flux has little effect. It is also shown that the system performance can be improved by enlarging condensation heat transfer area.

INFLUENCE OF HALL CURRENT AND HEAT SOURCE ON MHD FLOW OF A ROTATING FLUID IN A PARALLEL POROUS PLATE CHANNEL

  • VENKATESWARLU, M.;UPENDER REDDY, G.;VENKATA LAKSHMI, D.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.4
    • /
    • pp.217-239
    • /
    • 2018
  • This paper examined the MHD and thermal behavior of unsteady mixed convection flow of a rotating fluid in a porous parallel plate channel in the presence of Hall current and heat source. The exact solutions of the concentration, energy and momentum equations are obtained. The influence of each governing parameter on non dimensional velocity, temperature, concentration, skin friction coefficient, rate of heat transfer and rate of mass transfer at the porous parallel plate channel surfaces is discussed. During the course of numerical computation, it is observed that as Hall current parameter and Soret number at the porous channel surfaces increases, the primary and secondary velocity profiles are increases while the primary and secondary skin friction coefficients are increases at the cold wall and decreases at the heated wall. In particular, it is noticed that a reverse trend in case of heat source parameter.

Effects of Energy Input and Air Flow Rate on Oxygen Transfer Rate at Different MLVSS in a Jet Loop Reactor (JLR) (MLVSS에 따른 Jet Loop Reactor (JLR)에서 동력량과 공기량이 산소전달률에 미치는 영향)

  • Yoon, Ae-Hwa;Bae, Jong-Hun;Lim, Hyun-Woo;Jun, Hang-Bae;Huh, Tae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.868-873
    • /
    • 2011
  • Oxygen transfer rate generally determines the performance of an aerobic wastewater treatment process that treats high strength wastewater such as food wastewater, animal wastewater and landfill leachate. In this paper, OUR and $K_L{\cdot}a$ were evaluated by using Jet Loop Reactor (JLR) according to the concentration of a mixed liquor volatile suspended solid (MLVSS), oxygen (air) flow rate and energy input as the variable of the operating conditions. Also, a nonlinear regression model was proposed by the statistical methods with the calculated $K_L{\cdot}a$. As a results, in case of applying the high strength wastewater which has to maintain high MLVSS, the energy input and the air flow rate are major parameters oxygen transfer rate in JLR. Finally, the final nonlinear regression model had been developed as a function of E/V, $Q_g$, and ${\mu}_c$.

Development of head loss coefficient formula at surcharged four-way combining square manhole with variation of inlet flow (유입유량 변화를 고려한 과부하 4방향 사각형 합류맨홀에서의 손실계수 산정식 개발)

  • Jo, Jun Beom;Kim, Jung Soo;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.877-887
    • /
    • 2017
  • The energy losses due to surcharged flow at four-way combining manhole, which is mainly installed in the downstream of urban sewer system, is the main cause of inundation in urban area. Surcharged four-way combining manholes form various flow configuration such as straight through, T-type, and four-way manholes depending on variation of inflow discharge in inlet pipes. Therefore, it is necessary to analyze change of energy loss and estimate head loss coefficients at surcharged four-way combining manhole with variation of inflow discharge ratio. The hydraulic experimental apparatus which can change inflow ratios were installed to analyze the flow characteristics at four-way combining manhole. In this study, to calculate the head loss coefficient according to change of the inflow discharge ratios at the surcharged four-way combining square manhole, the discharge conditions of 40 cases which the inflow ratios of each inlet pipe were changed by 10% interval was selected. The head loss coefficient at surcharged square manhole showed the lowest value of 0.40 at the straight manhole and the highest value of 1.58 at the $90^{\circ}$ junction manhole. In the combining manholes (T-type and four-way), the head loss coefficients were calculated more higher as the lateral flow rate was biased. The contour map of head loss coefficient range was constructed by using the estimated head loss coefficients and the empirical formula of head loss coefficients was derived to consider the variation of inflow discharge ratios at the surcharged square manhole. The empirical formula could be applied to the design and assessment of the urban drainage system.

Optimal Design for the Low Drag Tail Shape of the MIRA Model (MIRA Model 후미의 저저항 최적 설계)

  • Hur Nahmkeon;Kim Wook
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.34-40
    • /
    • 1999
  • Drag reduction on vehicles are the main concern for the body shape designers in order to lower the fuel consumption rate and to aid the driving stability. The drag of bluff bodies like transportation vehicles is mostly pressure drag due to the flow separation, which can be minimized by controlling the location and size of the separation bubble. In the present study, the TURBO-3D code is incorporated with optimal algorithm based on analytical approximation method to obtain an optimal afterbody shape of the MIRA Model corresponding to the lowest drag coefficient. For this purpose three mutually independent afterbody angles are chosen as design variables, while the drag coefficient is chosen as an objective function. It is demonstrated in the present study that an optimal body shape having the lowest drag coefficient which is about 6% lower than that of the original shape has been successfully obtained within number of iterations of tile optimal design loop.

  • PDF

Performance and Heat Transfer Characteristics of Heat Pump System Using Refrigerant Mixtures (혼합냉매를 사용한 열펌프 시스템의 성능과 열전달 특성)

  • Kim, T.S.;Shin, J.Y.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.360-369
    • /
    • 1992
  • A heat pump system is constructed to evaluate its performance and heat transfer characteristics with mixtures of R22/R142b as working fluids. The heat transfer in the evaporator and the overall performance are measured and analyzed in terms of the compositions and relevant variables. Possibility of capacity modulation by changing composition is observed without degradation of heat transfer coefficients and coefficient of performance. The cooling capacity is varied continuously within 200 percent based on minimum capacity at constant compressor speed. For similar cooling capacity, COP is improved by mixing two refrigerants and shows maximum value at 60% mass fraction of R22. Average heat transfer coefficients of mixtures decrease in comparison with pure refrigerants at similar cooling capacity and mass flow rate. However, the overall heat transfer coefficients decrease moderately. A cycle simulation is performed in order to manifest the advantages of using refrigerant mixtures, considering experimentally observed heat transfer characteristics.

  • PDF

Optimal Design for the Low Drag Tail Shape of the MIRA Model (MIRA model 후미의 저저항 최적 설계)

  • Kim Wook;Hur Nahmkeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.67-74
    • /
    • 1998
  • Reducing drag of vehicles are the main concern for the body shape designers in order to lower fuel consumption rate and to aid the driving stability. The drag of bluff bodies like transportation vehicles is mostly pressure drag due to the flow separation, which can minimized by controlling the location and size of the separation bubble. In the present study, the TURBO-3D code is incorporated with optimal algorithm based on analytical approximation method to obtain optimal afterbody shape of the MIRA Model corresponding to the lowest drag coefficient. For this purpose three mutually independent afterbody angles are chosen as design variables, while the drag coefficient is chosen as an objective function. It is demonstrated in the present study that an optimal body shape having lowest drag coefficient which is about $6\%$ lower than that of the original shape has been successfully obtained within number of iterations of the optimal design loop.

  • PDF