• Title/Summary/Keyword: Flow-rate Coefficient

Search Result 933, Processing Time 0.025 seconds

The Numerical Simulation of Flow Field and Heat Transfer around 3-D Tube Banks (3차원 튜브 뱅크 주위의 난류 유동장 및 열전달에 대한 수치 해석적 연구)

  • Park, S.K.;Kim, K.W.;Ryou, H.S.;Choi, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.375-385
    • /
    • 1996
  • Turbulent flow and heat transfer characteristics around staggered tube banks were studied using the 3-D Navier-Stokes equations and energy equation governing a steady incompressible flow, which were reformulated in a non-orthogonal coordinate system with cartesian velocity components and discretized by the finite volume method with a non-staggered variable arrangement. The predicted turbulent kinetic energy using RNG $k-{\varepsilon}$ model was lower than that of standard $k-{\varepsilon}$ model but showed same result for mean flow field quantities. The prediction of the skin friction coefficient using RNG $k-{\varepsilon}$ model showed better trend with experimental data than standard $k-{\varepsilon}$ model result. The inclined flow showed higher velocity and skin friction coefficient than transverse flow because of extra strain rate ($\frac{{\partial}w}{{\partial}y}$). Also, this was why the inclined flow showed higher local heat transfer coefficient than the transverse flow.

  • PDF

Study on Simulation of Cooling Water through Concentric Double Pipe Heat Exchanger (Concentric Double Pipe 열교환기에서 냉각수 급랭 현상의 모사에 대한 연구)

  • ANCHEOL CHOI;SEONGWOO LEE;IK HO SHIN;SUNGWOONG CHOI
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.741-747
    • /
    • 2023
  • In this study, the heat transfer characteristics were numerically analyzed to investigate the possibility of utilizing cooling water using liquid nitrogen. From the study, as the mass flow rate of the hot fluid increased, the heat transfer rate increased by 8.9-81.7%. And lowering the inlet temperature of the hot fluid resulted in increase in the heat transfer rate by 33.8-71.5%. As for the filling level of liquid nitrogen, as higher filling level led to a decrease in the outlet temperature and an increase in the overall heat transfer coefficient.

Effect of Aspect Ratio on Gas Microchannel Flow (마이크로채널 흐름에 관한 종횡비의 영향)

  • Tajul, Islam;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.16-21
    • /
    • 2007
  • Three dimensional numerical study was carried out to investigate the effect of aspect ratio on microchannel flow. We considered five straight rectangular channels with aspect ratios (height/width) 0.2, 0.4, 0.6, 0.8 and 1.0. Nitrogen gas flow was investigated for both slip and noslip wall boundary conditions. Isothermal wall condition was assumed. We used control volume method for this simulation. The slip velocity increases with the increase of aspect ratio. Friction coefficient decreases with the increase of aspect ratio. Slip friction coefficient is lower than noslip friction coefficient. Mass flow rate of slip model is higher than that of noslip model. We compared our results with the experimental result reported in the literature. The agreement was good.

  • PDF

Effect of Condensation on Spray Characteristics of Simplex Swirl Nozzle (응축이 심플렉스 와류 노즐의 분무 특성에 미치는 영향)

  • Koh, Kwang-Uoong;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.107-112
    • /
    • 2001
  • The effect of ambient gas (steam) condensation on swirl spray characteristics were studied experimentally for low subcooling condition of the liquid. The configuration of the liquid(water) sheet and the breakup modes were examined. Also variation of the discharge coefficient, breakup length, local and the cross-sectional area-averaged SMD of droplets with the liquid flow(injection) rate were obtained. The perforation breakup mode appears dominant with condensation while the aerodynamic wave breakup mode is dominant without condensation(in the air environment). The discharge coefficient, breakup length and the mean drop sizes decrease in a same manner with increasing of the liquid flow rate for both cases(with and without condensation). The condensation effects are insignificant with the discharge coefficient. However, the local and cross-sectional area-averaged SMD are larger and the breakup length becomes shorter in the steam environment. The spray angle predicted from the volumetric flux distribution along the radial direction of the sprays in the steam environment becomes larger with condensation.

  • PDF

Application of Micro Cross-Flow Turbine to Water Supply System (마이크로 관류수차의 상수도 관로시스템 적용에 관한 연구)

  • Choi Young-Do;Kurokawa Junichi
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.3 s.36
    • /
    • pp.36-43
    • /
    • 2006
  • Recently, micro hydropower and it's useful utilization are taking a growing interest as a countermeasure of global worming by carbon dioxide and exhaustion of fossil fuel. The purpose of this study is to investigate the possibility of extracting micro hydropower wasted by a valve in water supply system using micro cross-flow hydraulic turbine. In order to fulfill the functions of controlling flow rate and pressure in substitute for the valve, air and water are supplied into an air suction hole which is installed on the side wall of micro cross-flow hydraulic turbine. The results show that in case of supplying a lot of air into the air suction hole, about 50% of flow rate and relatively high value of loss coefficient are controlled by the turbine. Moreover, including high possibility of applying the micro cross-flow turbine to water supply system, extended application of the turbine to the water discharge system of drainage and irrigation canal.

A Fundamental Study of a Variable Critical Nozzle Flow (가변형 임계 노즐유동에 관한 기초적 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.484-489
    • /
    • 2003
  • The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle.

  • PDF

Discharged Maximum Current Density of Vanadium Redox Flow Battery with Increased Electrolyte Flow Rate (바나듐계 산화-환원 유동 전지의 최대 방전전류와 유량의 상관성에 대한 실험적 연구)

  • Kim, Jung Myoung;Park, Hee Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.777-784
    • /
    • 2016
  • All-vanadium redox flow batteries (VRFBs) are used as energy storage systems for multiple intermittent power sources. The performance of the VRFBs depends on the materials and operating conditions. Hence, performance characterization is of great importance in the development of the VRFBs. This paper proposes a method for determining the maximum current density based on stoichiometric ratios. A laboratory-scaled VRFB with a projected electrode area of $25cm^2$ is electrically charged when the state of the charge has begun from 0.6. The operating conditions, such as current density and volumetric flow rate are important in the test, and the maximum current density is influenced by the mass transfer coefficient. The results show that increasing the electrolyte flow rate from 5 mL/min to 60 mL/min enhances the maximum current density up to $520mA/cm^2$.

A Numerical Study of the Effects of Mass Flow Rate Distribution on the Flow Characteristics in a Two Dimensional Multi-Jet with Crossflow of the Spent Fluid (직교류를 가지는 이차원 다중젯트에서 유량분포가 유동특성에 미치는 영향)

  • 강동진;오원태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1940-1949
    • /
    • 1995
  • A numerical study for a two dimensional multi-jet with crossflow of the spent fluid has been carried out. Three different distributions of mass-flow rate at 5 jet exits were assumed to see their effects upon the flow characteristics, especially in the jet-flow region. For each distribution, various Reynolds numbers ranging from laminar to turbulent flows were considered. Results show that a fully developed laminar flow exists above a certain Reynolds number whose exact value depends upon the mass flow rate distribution. AS the Reynolds number increases, the flow becomes transitional from downstream and finally a fully developed turbulent flow forms in the jet-flow region. The critical Reynolds number where the fully developed turbulent flow forms is quite dependent upon the distribution of mass-flow rate. One interesting result is that the distribution of the skin friction coefficient along the inpingement plate in the jet-flow region shows a consistent dependency on the Reynolds number, i.e. inversely proportional to the square root of the Reynolds number, regardless of flow regime.

Study on the Critical Nozzle Flow of Hydrogen Gas with Real Gas Effects (실제기체 효과를 고려한 수소기체의 임계노즐 유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3003-3008
    • /
    • 2007
  • Critical nozzle has been frequently employed to measure the flow rate of various gases, but hydrogen gas, especially being at high-pressure condition, was not nearly dealt with the critical nozzle due to treatment danger. According to a few experimental data obtained recently, it was reported that the discharge coefficient of hydrogen gas through the critical nozzle exceeds unity in a specific range of Reynolds number. No detailed explanation on such an unreasonable value was made, but it was vaguely inferred as real gas effects. For the purpose of practical use of high-pressure hydrogen gas, systematic research is required to clarify the critical nozzle flow of high-pressure hydrogen gas. In the present study, a computational fluid dynamics(CFD) method has been applied to predict the critical nozzle flow of high-pressure hydrogen gas. Redlich-Kwong equation of state that take account for the forces and volume of molecules of hydrogen gas were incorporated into the axisymmetric, compressible Navier-Stokes equations. A fully implicit finite volume scheme was used to numerically solve the governing equations. The computational results were validated with some experimental data available. The results show that the coefficient of discharge coefficient is mainly influenced by the compressibility factor and the specific heat ratio, which appear more remarkable as the inlet total pressure of hydrogen gas increases.

  • PDF

Bubble formation in globe valve and flow characteristics of partially filled pipe water flow

  • Nguyen, Quang Khai;Jung, Kwang Hyo;Lee, Gang Nam;Park, Hyun Jung;To, Peter;Suh, Sung Bu;Lee, Jaeyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.554-565
    • /
    • 2021
  • Air bubble entrainment is a phenomenon that can significantly reduce the efficiency of liquid motion in piping systems. In the present study, the bubble formation mechanism in a globe valve with 90% water fraction flow is explained by visualization study and pressure oscillation analysis. The shadowgraph imaging technique is applied to illustrate the unsteady flow inside the transparent valve. This helps to study the effect of bubbles induced by the globe valve on pressure distribution and valve flow coefficient. International Society of Automation (ISA) recommends locations for measuring pressure drop of the valve to determine its flow coefficient. This paper presents the comparison of the pressures at different locations along with the upstream and the downstream of the valve with the values at recommended positions by the ISA standard. The results show that in partially filled pipe flow, the discrepancies in pressure between different measurement locations in the valve downstream are significant at valve openings less than 30%. The aerated flow induces the oscillation in pressure and flow rate, which leads to the fluctuation in the flow coefficient of the valve. The flow coefficients have a linear relationship with the Reynolds number. For the same increase of Reynolds number, the flow coefficients grow faster with larger valve openings and level off at the opening of 50%.