• Title/Summary/Keyword: Flow-cell

Search Result 3,169, Processing Time 0.025 seconds

Apoptosis Induction in Human Leukemic Promyelocytic HL-60 and Monocytic U937 Cell Lines by Goniothalamin

  • Petsophonsakul, Ploingarm;Pompimon, Wilart;Banjerdpongchai, Ratana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2885-2889
    • /
    • 2013
  • Goniothalamin is an active compound extracted from Goniothalamus griffithii, a local plant found in northern Thailand. Goniothalamin inhibits cancer cell growth but is also toxic to normal cells. The aims of this study were to identify the cytotoxic effect of goniothalamin and the mechanism of cell death in human HL-60 and U937 cells. Cytotoxicity was determined by MTT assay and cell cycle profiles were demonstrated by staining with propidium iodide (PI) and flow cytometry. Apoptosis was confirmed by staining with annexin V-FITC/propidium iodide (PI) and flow cytometry. Reduction of mitochondrial transmembrane potential was determined by staining with dihexyloxacarbocyanine iodide and flow cytometry and expression of Smac, caspase-8 and -9 was demonstrated by Western blotting. Goniothalamin inhibited growth of HL-60 and U937 cell lines. An increase of SubG1 phase was found in their cell cycle profiles, indicating apoptosis as the mode of cell death. Apoptosis was confirmed by the flip-flop of phosphatidylserine using annexin V-FITC/PI assay in HL60 and U937 cells in a dose response manner. Furthermore, reduction of mitochondrial transmembrane potential was found in both cell types while expression of caspase-8, -9 and Smac/Diablo was increased in HL-60 cells. Taken together, our results indicate that goniothalamin-treated human leukemic cells undergo apoptosis via intrinsic and extrinsic pathways.

Flow Cytometric Analysis of the Effect of Silkworm Hemolymph on the Baculovirus-Induced Insect Cell Apoptosis

  • Rhee, Won-Jong;Park, Tai-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.853-857
    • /
    • 2001
  • The effect of silkworm hemolymph on the inhibition of baculovirus-induced insect cell apoptosis was quantitatively investigated using a flow cytometric analysis. Spodoptera frugiperda (Sf9) cell and Autographa californica nuclear polyhedrous virus (AcNPV) were used as a model for insect cell and baculovirus in this study, respectively. Compared with a mammalian cell cycle, the fraction of G1 cells was relatively small in the Sf9 cell cycle. Silkworm hemolymph did not affect the Sf9 cell-cycle distribution before the baculovirus infection. However, the fraction of cells which are not in the sub-G1 phase remained at a high level for 3 days after the infection in the medium without silkworm hemolymph, while it remained at a high level for 7 days after the infection in the medium supplemented with silkworm hemolymph. The fractions of apoptotic cells in the sub-G1 phase were $4.7\%$, and 4 days after infection, $22.7\%$, in the media with and without silkworm hemolymph, respectively.

  • PDF

Numerical Studies of a Separator for Stack Temperature Control in a Molten Carbonate Fuel Cell (용융탄산염 연료전지 스택 온도 조절을 위한 분리판에 관한 수치 해석 연구)

  • Kim, Do-Hyung;Kim, Beom-Joo;Lim, Hee-Chun
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.305-312
    • /
    • 2011
  • The use of a separator to control stack temperature in a molten carbonate fuel cell was studied by numerical simulation using a computational fluid dynamics code. The stack model assumed steady-state and constant-load operation of a co-flow stack with an external reformer at atmospheric pressure. Representing a conventional cell type, separators with two flow paths, one each for the anode and cathode gas, were simulated under conditions in which the cathode gas was composed of either air and carbon dioxide (case I) or oxygen and carbon dioxide (case II). The results showed that the average cell potential in case II was higher than that in case I due to the higher partial pressures of oxygen and carbon dioxide in the cathode gas. This result indicates that the amount of heat released during the electrochemical reactions was less for case II than for case I under the same load. However, simulated results showed that the maximum stack temperature in case I was lower than that in case II due to a reduction in the total flow rate of the cathode gas. To control the stack temperature and retain a high cell potential, we proposed the use of a separator with three flow paths (case III); two flow paths for the electrodes and a path in the center of the separator for the flow of nitrogen for cooling. The simulated results for case III showed that the average cell potential was similar to that in case II, indicating that the amount of heat released in the stack was similar to that in case II, and that the maximum stack temperature was the lowest of the three cases due to the nitrogen gas flow in the center of the separator. In summary, the simulated results showed that the use of a separator with three flow paths enabled temperature control in a co-flow stack with an external reformer at atmospheric pressure.

The Effect of Inlet Distorted Flow on Steady and Unsteady Performance of a Centrifugal Compressor (입구 비 균일 유동이 원심압축기의 정상 및 비정상 성능에 미치는 영향)

  • Kang Shin-Hyoung;Park Jae-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.971-978
    • /
    • 2005
  • Effects of inlet distorted flow on performance, stall and surge are experimentally investigated for a high-speed centrifugal compressor. Tested results for the distorted inlet flow cases are compared with the result of the undistorted one. The performance of compressor is slightly deteriorated due to the inlet distortion. The inlet distortion does not affect the number of stall cell and the propagation velocity. It also does not change stall inception flow rate. However, as the distortion increases, stall starts at the higher flow rate for low speed and at the lower flow rate for high speed. For 50,000 rpm stall occurrs as the flow rate decreases, however disappears fur the smaller flow rate. This is due to the interaction of surge and stall. After the stall and surge interact, the number of stall cell decreases.

Stall Critical Flow Angle in a Vaneless Diffuser of a Centrifugal Compressor (베인없는 디퓨저에서의 스톨 임계 유동각에 관한 연구)

  • Kang Jeong-Seek;Kang Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.611-614
    • /
    • 2002
  • Rotating stall in vaneless diffusers of centrifugal compressor occurs in the diffuser wall due to flow separation at large inlet flow angle. For this reason, the critical inlet flow angles are suggested by several researchers. Beyond this critical angle, flow separates in the diffuser, and develops into rotating stall. This paper studied this critical flow angle. Rotating stall is measured through eight fast-response pressure transducers which are equally spaced around the circumference at the inlet and exit of a vaneless diffuser. Experiments are done from 20000rpm to 60000rpm for the diffuser stall. Two-cell structure which rotates at $6{\~}l0{\%}$ of impeller speed is fully developed at $20000{\~}40000rpm$, and three-cell structure which rotates at $7{\~}9{\%}$ of impeller speed is fully developed at $50000{\~}60000rpm$. This paper shows that the critical inlet flow angle is not constant but related with tip speed of impeller. As tip speed increases, so does the critical inlet flow angle.

  • PDF

Temperature Field Measurements of Hele-Shaw Convection Cell Using a Holographic Interferometry (홀로그래픽 간섭계를 이용한 Hele-Shaw Convection Cell 내부 온도장 측정)

  • Kim, Seok;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.530-535
    • /
    • 2001
  • Variations of temperature field in a Hele-Shaw convection cell (HSC) were measured using a holographic interferometry with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Especially, the period of oscillation at $Ra = 6.35{\times}10^6$ was 62 seconds. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noise, compared with the double-exposure method. The two holographic interferometer techniques employed complementary in this study were proved to be useful for analyzing the temperature field variations of unsteady thermal fluid flows.

  • PDF

COMPUTATIONAL STUDY FOR PERFORMANCE EVALUATION OF FLOW CHANNELS INSIDE CDI UNIT CELL (수치모사를 이용한 CDI Unit Cell 내부의 유로성능 평가)

  • Sohn, D.Y.;Choi, Y.H.;Park, D.W.;Jung, C.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • In the present study, computations for flow fields inside the CDI unit cells with electrodes and spacers have been made to evaluate their performance. Three types of unit cells that include a planar type, a serpentine channel type, and a spiral wound type were considered and their flow characteristics were compared. From the computational results, it is found that the serpentine channel type has a large flow resistance and can not guarantee the outflow flux for industrial applications. On the other hand, the planar type can sustain a large enough outflow flux but it's efficiency is low for the electrode-use because of the non-uniform velocity distribution inside the cell and dead zones in every corner. Finally, The spiral wound type has not only a large outflow flux as much as the planar type has, but also a high efficiency for the electrode-use because of uniform velocity distribution. From this comparison, we can expect that the spiral wound type of CDI unit cell would have a high performance deionization capability.

Temperature Field Measurements of Hele-Shaw Convection Cell Using a Holographic Interferometry (홀로그래픽 간섭계를 이용한 Hele-Shaw Convection Cell 내부 온도장 측정)

  • Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1624-1631
    • /
    • 2001
  • Variations of temperature field in a Hele-Shaw convection cell (HSC) were measured using a holographic interferometry with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Especially, the period of oscillation at Ra = 6.35 $\times$ 10$^{6}$ was 62 seconds. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noise, compared with the double-exposure method. The two holographic interferometer techniques employed complementary in this study were proved to be useful fur analyzing the temperature field variations of unsteady thermal fluid flows.

Numerical Study About Compression Effect of Porous Electrodes on the Performance of Redox Flow Batteries (다공성 전극의 압축률이 레독스흐름전지의 성능에 미치는 영향에 대한 수치해석적 연구)

  • Jeong, Daein;Jung, Seunghun
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • When designing a redox flow battery system, compression of battery stack is required to prevent leakage of electrolyte and to reduce contact resistance between cell components. In addition, stack compression leads to deformation of the porous carbon electrode, which results in lower porosity and smaller cross-sectional area for electrolyte flow. In this paper, we investigate the effects of electrode compression on the cell performance by applying multi-dimensional, transient model of all-vanadium redox flow battery (VRFB). Simulation result reveals that large compression leads to greater pressure drop throughout the electrodes, which requires large pumping power to circulate electrolyte while lowered ohmic resistance results in better power capability of the battery. Also, cell compression results in imbalance between anolyte and catholyte and convective crossover of vanadium ions through the separator due to large pressure difference between negative and positive electrodes. Although it is predicted that the battery power is quickly improved due to the reduced ohmic resistance, the capacity decay of the battery is accelerated in the long term operation when the battery cell is compressed. Therefore, it is important to optimize the battery performance by taking trade-off between power and capacity when designing VRFB system.

Visualization of Water Droplets in the Simple Flow Channel and Rib Geometry for Polymer Electrolyte Membrane Fuel Cells (PEMFCs) (고분자전해질형 연료전지의 단순 채널 리브 형상에서의 물방울 가시화 연구)

  • Choi, Min Wook;Kim, Han-Sang
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.4
    • /
    • pp.386-392
    • /
    • 2014
  • The effective water management in a polymer electrolyte membrane fuel cell (PEMFC) is one of the key strategies for improving cell performance and durability. In this work, an ex situ measurement was carried out to understand the water droplet behavior on the surface of gas diffusion layer (GDL) as a fundamental study for establishing novel water management. For that purpose, simplified cell including one rib and two flow channels was designed and fabricated. Using this ex situ device, the water droplet emergence through the GDL of the PEMFC was emulated to understand liquid water transport through the porous diffusion medium. Through the visualization experiment, the emergence and growth of water droplets at the channel/GDL interface are mainly observed with the surface characteristics of GDL (SGL 10BA, 24BA) and rib when the liquid water passes through the GDL and is expelled to the flow channel. It is expected that the results obtained from this study can contribute to the better understanding on the water droplet behavior (emergence and removal) in the flow channels of PEMFC.