• Title/Summary/Keyword: Flow-Visualization

Search Result 1,522, Processing Time 0.027 seconds

A Study on the Flow Field Characteristics of Air Induction System for Reducing the Signal-to-Noise in the MAFS Output

  • Yoo, Seoung-Chool
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • This study presents the flow visualization results, velocity and turbulence intensity measurements made within an air filter cover and entry region of a mass air flow sensor (MAFS) which is used in an induction system of 3.8L engine. Flow structure in two air filter cover assemblies were examined. The first was a clear plastic replica of the production cover while the second was a modified clear plastic cover with a geometry configured to reduce fluctuations. High speed flow visualization and laser doppler velocimetry (LDV) systems were used to reveal and analyze the flow field characteristics encountered in the sensor design process under steady flow conditions. A 40-watt copper vapor laser was used as a light source. Its beam is focused down to a sheet of light approximately 1.5mm thick. The light scattered off the particles was recorded by a 16mm high speed rotating prism camera at 5000 frames per second. A comparison of the flow patterns and LDV measurements in the original and modified air filter covers is presented to illustrate the controlling effect of the cover design on the turbulence structure formation near the bypass and on the sensor output signal. In both axial and radial planes of the main passage it was found that the turbulence flow pattern is remarkably influenced by the air filter cover and main passage configuration.

  • PDF

Surface Flow Visualization of MIRA Notchback Reference Car (MIRA Notchback Reference Car 표면유동가시화)

  • Chun, Chung-Hwan;Kim, Yong-Hwan;Cho, Kwang-Ryun;Roh, Sang-Kil;Lee, Eung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1309-1316
    • /
    • 2000
  • A surface flow visualization of a MIRA notchback reference car was conducted using a 1/4 -scale model in the POSTECH wind tunnel. The flow separation and reattachment phenomen a around A-pillar, C-pillar, backlight, and trunk were discussed with the help of the distributions of singular points such as nodes, saddles, and spiral foci. The locations of the singular points on the trunk and the backlight from experimental results are compared with those of CFD results using the turbulence modeling of RNG k -${\varepsilon}$ and RSM.

Flow Visualization around the Endothelial Cell Model by the PIV System (입자영상유속계를 이용한 혈관내피세포 모형 주위의 유동가시화)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.381-384
    • /
    • 2000
  • Relationships between biochemical phenomena and hemodynamics on human endothelial cells are very important to study the mechanism of atherosclerotic formation and development. The objective of this study is to investigate the flow phenomena around the endothelial cell model by the PIV experiment. The microscopic images of endothelial cells were acquired by a CCD camera to fabricate the shape of endothelial cell. The cell models were fabricated by using a photoforming process. Two consecutive particle images were captured by the CCD camera for the image processing. Conifer powder as the tracing particles was added to water to visualize the flow field. The cross-correlation method was applied fer the image processing of the flow visualization. Pressure and wall shear stress variations on the surfaces of the endothelial cells were calculated to investigate the effects of hemodynamic forces on the morphological changes.

  • PDF

Visualization of Pollutant Dispersion over Hilly Terrain (산지 지형에서의 오염물질 확산에 관한 가시화 연구)

  • Kil Tae-Ho;Lee Choung Mook;Lee Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.47-50
    • /
    • 2003
  • The wind flow and pollutant dispersion over a two-dimensional sinusoidal hilly obstacle with slope (the ratio of height to half width) of 0.7 have been investigated experimentally and numerically. Flow over a single sinusoidal hill model was visualized in a subsonic wind tunnel. The mean velocity profiles, turbulence statistics, and pollutant concentration distribution were measured at the Reynolds number based on the obstacle height (H=40mm) oft $2.6\times10^4$. Experimental results for flow over a flat ground were agreed with the theoretical and numerical results. When a pollutant source is located behind the hilly terrain, the pollutant dispersion appeared even in the upstream region due to recirculation flow.

  • PDF

Two-Phase Flow Patterns of $CO_{2}$ in a Heated Narrow Rectangular Channel (미세사각채널에서 $CO_{2}$의 이상유동 양식에 관한 연구)

  • Kim Yongchan;Yun Rin;Chung Jin Taek
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.66-72
    • /
    • 2004
  • The heat transfer and pressure drop characteristics of $CO_{2}$ are substantially different from those for CFC and HCFC refrigerants. In addition, geometric effects on two-phase flow patterns of $CO_{2}$ are also very significant in many respects. Therefore, two-phase flow patterns of $CO_{2}$ in a narrow rectangular channel or a small diameter tube whose gap size or hydraulic diameter is less than 2 mm are very important to understand heat transfer characteristics and to develop an appropriate heat transfer correlation. In the present study, the evaporation process of $CO_{2}$ in a narrow rectangular channel is visualized at various test conditions, and then the effects of operating conditions are analyzed.

  • PDF

Velocity and temperature Visualization of Air Convection in Differently Heated Rectangular Cavity with Upper channel (상부채널을 갖는 사각공간에서 열유속 변화에 따른 공기대류의 속도와 온도 가시화)

  • Lee, Cheol-Jae;Chung, Han-Shik;Park, Chan-Su;Cho, Dae-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.290-295
    • /
    • 2000
  • An experimental study was carried out in a cavity with upper channel and square heat surface by visualization equipment with Mach-Zehnder interferometer and laser apparatus. The visualization system consists of 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system(CACTUS'2000). Obtained result showed various flow patterns. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach-Zehnder are also compared in terms of constant heat flux.

  • PDF

Highly Efficient PIV Measurement of Complex Flows Using Refractive Index Matching Technique

  • NISHINO Koichi;KAWAGUCHI Daisuke;KOSUGI Takashi;ISODA Haruo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.57-63
    • /
    • 2004
  • various applications is presented. It is based on rapid-prototyping of transparent model for flow visualization and on the use of refractive index matching that enables efficient and clear visualization of the flow inside the model. The model is immersed in the index-matching fluid in a glass tank so that any displacement and rotation of the model in the tank have no influence on the optical setup for image acquisition to be made through a glass wall. This can facilitate greatly the camera calibration for stereo PIV and 3-D PTV. As the flow model is generated directly from 3-D surface data, no laborious preparation of the flow model is needed. This approach for seamless linking of model generation and PIV measurement is applicable to various flow measurements in automobile, ship building, fluid machinery, turbine, electrical appliances, heat exchanger, electronic cooling, bio-engineering and so on.

  • PDF

A study on the flow characteristics of laminar wavy film (층류파형 액막의 유동특성에 관한 연구)

  • Kim, Jin-Tae;Lee, Gye-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.628-636
    • /
    • 1997
  • Flow visualization technique incorporating photochromic dye is used to study the flow characteristics of the gravity driven laminar wavy film. The film thickness and wave speed are successfully measured by flow visualization. As the inclination angle increases, the waves have higher peaks and lower substrate thickness. The measured cross stream velocity at the free surface is up to 10% of stream wise velocity, which shows enhanced mixing in the lump of the film. The measured stream wise velocity profiles are close to parabolic profile near the substrate and the peak but show significant velocity defect near the rear side of the wave. The measured wall shear rate distributions show good agreement with the previous workers' numerical results.

Study on drag reduction of commercial vehicle using flow control device (유동 제어 장치를 이용한 상용차량의 항력저감 연구)

  • S. H. Kim;J. J. Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.8-13
    • /
    • 2023
  • The primary challenge in improving fuel efficiency and reducing air pollution for commercial vehicles is reducing their aerodynamic drag. Various flow control devices, such as cab-roof fairing, gap fairing, cab extender, and side skirt have been introduced to reduce drag, however, the drag reduction effect and applicability are different depending on each commercial vehicle model. To evaluate the fuel consumption of heavy vehicles, a comprehensive research approach, including drag force measurement, flow field analysis is required. This study investigated the effect of a cab extender, which installed rear region of cab, on a drag coefficient of commercial vehicle through wind tunnel experiments and CFD. The results showed that the cab extender significantly modified the flow structure around the vehicle, leading to 8.2% reduction in drag coefficient compared to the original vehicle model. These results would provide practical application for enhancing the aerodynamic performance and fuel efficiency of heavy vehicle.