• Title/Summary/Keyword: Flow-Field Visualization

Search Result 353, Processing Time 0.024 seconds

Flow Characteristics for Vortexing Draining by Vortex Suppressor from Cylindrical Containers (회전 억제 장치에 따른 원통 내 회전 배출 유동특성)

  • Zhang, YingZhe;Park, Chan-Kyu;Sohn, Chang-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.89-92
    • /
    • 2006
  • In the present study, the flow field of a mesh type suppressor with varying holes at the central portion is studied to investigate drain flow characteristics in a cylindrical tank. Further, an attempt is made to understand the changes in the flow field brought about by the suppressors of different kinds in a circular tank which ultimately prevents vortex formation. For this purpose, flow visualization studies using PIV (Particle Image Velocimetry) to determine the flow patterns in a cylindrical tank with circular cross section without suppressor and with suppressor are carried out after imparting rotation to the liquid in the tank. Results are obtained when there is no draining and with draining. The flow field is visualized both in horizontal and vertical planes.

  • PDF

Improved Transmission Path Visualization of Vibration Power Flow for Stiffened Plate Using Streamlines Representation (유선 표현법을 이용한 보강판의 진동파워흐름에 대한 개선된 전달경로 가시화)

  • Fawazi, Noor;Jeong, Un-Chang;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.692-700
    • /
    • 2012
  • Vibration intensity has been used to localize vibration source of a vibrating system. Not only that, vibration intensity has also been used for structural diagnostic in identifying crack and mounted stiffeners. To clearly identify the location of vibration source and understand the changes of energy transmission path, clear flow visualization is required. Most of previous works used vectors to indicate the magnitude and direction of emerging vibration energy and transmission paths. However, due to the large surface area of a plate like-structure, clear transmission paths cannot be achieved using vector visualization. This becomes an issue when detail vector flow at all locations of the whole plate surface is required. In this study, streamlines visualization is used to clearly indicate the power flow transmission path at all plate surface. By using streamlines representation, not only clear transmission paths are obtained, but also improves the vector visualization which helps us to understand the changes of the energy flow especially for stiffened plates. In this study, vibration intensity computation is firstly compared to previous work to validate the vibration intensity computation. To clearly show the power flow transmission paths, streamlines representation is shown. This representation overcomes the unclear vector direction especially for stiffened plates. Different pattern of energy transmission path can be observed using streamlines representation for stiffened and unstiffened plate. The complex streamlines pattern can also be observed at high resonance frequencies which is unclear by using vector representation.

Measurement of Flow inside Curved Microtube Using a Digital Micro Holographic Particle Velocimetry (디지털 홀로그래픽 입자유속계를 이용한 미세곡관 내부유동 측정)

  • Kim, Seok;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.116-118
    • /
    • 2007
  • Three-dimensional (3D) velocity field information of a laminar flow in a curved micro tube of circular cross-section has been measured using a digital micro holographic particle tracking velocimetry (HPTV). The temporal evolution of instantaneous velocity field of a water flow in a curved micro tube of $100\;{\mu}\;m$ and $300\;{\mu}\;m$ in inner diameter was obtained. The 3D mean velocity field distribution was obtained quantitatively by statistical-averaging of instantaneous velocity fields. At low Dean number (De), a secondary flow was not generated in the curved tube. With increasing Dean number, the secondary flow constituted of two large-scale counter-rotating vortices was formed due to enhanced centrifugal force. To reveal the flow characteristics of high Dean numbers, trajectories of fluid particles were evaluated experimentally from the 3D velocity fields data measured by the HPTV technique. The present experimental results, especially the 3D particle trajectories, would be helpful to design and to understand the mixing phenomena in 3D curved passages of various curved micro-tubes or micro-channels.

  • PDF

Noise and flow analysis of lift-type disk wind power System (양력형 디스크 풍력 발전기의 유동 및 소음 해석)

  • Ko, Seungchul;Na, Jisung;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.52-56
    • /
    • 2017
  • In this study, we investigate the flow characteristics of lift-type disk which behaves the up-down motion using the large eddy simulation (LES) and immersed boundary method (IBM). Also, we perform the noise analysis using pressure field at 1.35 m distance and reveal the cause of noise to observe the vortical structure analysis of flow result. It is observed that vortical structure and wind shear were generated at leading edge and tower with high velocity deficit and flow separation. High magnitude of flow noise was observed in low frequency range which is from 30 Hz to 60 Hz. It was observed that vortical structure at leading edge was generated in frequency range from 33.3 Hz to 41.6 Hz. Temporal characteristic in vortical structure at leading edge was similar to noise characteristics, having the similar frequency ranges.

A Numerical Study of the Performance of a Contoured Shock Tube for Needle-free Drug Delivery

  • Rasel, Md. Alim Iftekhar;Kim, Heuy Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.2
    • /
    • pp.32-38
    • /
    • 2012
  • In recent years a unique drug delivery system named as the transdermal drug delivery system has been developed which can deliver drug particles to the human skin without using any external needle. The solid drug particles are accelerated by means of high speed gas flow through a shock tube imparting enough momentum so that particles can penetrate through the outer layer of the skin. Different systems have been tried and tested in order to make it more convenient for clinical use. One of them is the contoured shock tube system (CST). The contoured shock tube consists of a classical shock tube connected with a correctly expanded supersonic nozzle. A set of bursting membrane are placed upstream of the nozzle section which retains the drug particle as well as initiates the gas flow (act as a diaphragm in a shock tube). The key feature of the CST system is it can deliver particles with a controllable velocity and spatial distribution. The flow dynamics of the contoured shock tube is analyzed numerically using computational fluid dynamics (CFD). To validate the numerical approach pressure histories in different sections on the CST are compared with the experimental results. The key features of the flow field have been studied and analyzed in details. To investigate the performance of the CST system flow behavior through the shock tube under different operating conditions are also observed.

Experimental Study of the Axial Slit Wall and Radial Temperature Gradient Effect on Taylor-Couette Flow (Taylor-Couette 유동에서 축방향 홈과 반경방향 온도구배의 영향에 대한 실험적 연구)

  • Lee, Sang-Hyuk;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.33-38
    • /
    • 2008
  • The effect of the radial temperature gradient and the presence of slits in the wall of outer of two cylinders involved in creating a Taylor-Couette flow was investigated by measuring the velocity field inside the gap. The slits were azimuthally located along the inner wall of the outer cylinder and the number of slits used in this study was 18. The radius ratio and aspect ratio of the models were 0.825 and 48, respectively. The heating film wrapped around the inner cylinder was used for generating the constant heat flux and we ensured the constant temperature condition at the outer space of the outer cylinder. The velocity fields were measured by using the PIV(particle image velocimetry) method. The refractive index matching method was applied to remove image distortion. The results were compared with plain wall configuration of Taylor-Couette flow. From the results, the presence of slits in the wall of outer cylinder and temperature gradient increased the flow instability.

Experimental study on the helical flow field in a concentric annulus with rotating inner cylinders (안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적연구)

  • Hwang, Young-Kyu;Kim, Young-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.631-636
    • /
    • 2000
  • The experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow have been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.

  • PDF

Velocity Field Measurement of Flow Inside SNOUT of Zinc Plating Process ( I ) (용융아연 도금공정에서의 SNOUT 내부 유동장 해석 ( I ))

  • Shin, Dae Sig;Choi, Jayho;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1265-1273
    • /
    • 1999
  • PIV(Particle Image Velocimetry) velocity field measurements inside the snout of a1/10 scale model of the Zn plating process were carried out at the strip speed $V_s=1.5m/s$. Aluminum powder particles ($1{\mu}m$) and atomized olive oil ($3{\mu}m$) were used as seeding particles to simulate the molten Zinc flow and deoxidization gas flow, respectively. A pulsed Nd:Yag laser and a $2K{\times}2K$ high-resolution CCD camera were synchronized for the PIV velocity field measurement. From flow visualization study, it is found that the liquid flow in the Zn pot is dominantly governed by the uprising flow caused by the rotating sink roll, with its effect on the steel strip inside the snout largely diminished by installing of the snout. The deoxidization gas flow in front of the strip inside the snout can be characterized by a large-scale vortex rotating clockwise direction formed by the moving strip. In the rear side of the strip, a counter-clockwise vortex is formed and some of the flow entrained by the moving strip impinges on the free surface of molten zinc. The liquid flow in front of the strip is governed by the flow entering the snout, caused by the spinning sink roll. Just below the free surface a counter-clockwise vortex is formed near the snout wall. The moving strip affects dominantly the flow behind the strip inside the snout, and large amount of the liquid flow follows the moving strip toward the sink roll. The thickness of the flow following the strip is very thin in the front side due to the uprising flow, however thick boundary layer is formed in the rear side of the strip. Its thickness is increased as moving downstream toward the sink roll. Inside the snout, the deoxidization gas flow above the free surface is much faster than the liquid flow in the zinc pot. Due to the larger influx of the flow following the moving strip in the rear side of the strip, higher percentage of imperfection can be anticipated on the rear surface of the strip.

A Study on the Flue Gas Mixing for the Performance Improvement of De-NOx plant (배연탈질설비의 성능향상을 휘한 가스혼합에 관한 연구)

  • 류병남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.462-472
    • /
    • 1999
  • De-NOx facility using Selective Catalytic Reduction method is the most widely applied one that removes NOx from flue gas emitted from combustion facility such as boiler for power generation engine incinerator etc. Reductant $NH_3\;or\;NH_4OH$ is sprayed into flue gas to convert NOx into $H_2O$ and $N_2.$ Good mixing between flue gas and $NH_3$ is the most important factor to increase reduction in catalytic layer and to reduce unreacted NH3 slip. Therefore the development of mixer device for mixing effect is one of the important part for SCR facility. Objectives of this study are to investigate the relation between flow and concentration field by observation at the wake of delta-wing type mixer. At the first stage qualitative measurement of flow field is conducted by flow visualization using laser light sheet in lab. scale wind tunnel. Also we have conducted the quantitative analysis by comparing flow field measurement using LDV with numerical simulation. On the basis of qualitative and quantitative analysis we investigate the dis-tribution of flow and concentration in flow model facility. The results of an experimental and compu-tational examination of the vortex structures shed from delta wing type vortex generator having $40^{\circ}$ angle of attack are presented, The effects of vortex structure on the gas mixing is discussed, too.

  • PDF

Experimental Study on Turbulent Characteristics of Swirling Flow in 90$^{\circ}$ Degree Circular Tube by Using a PIV Technique (PIV기법을 이용한 원헝단면을 갖는 90$^{\circ}$ 곡관내의 선회유동의 난류특성에 관한 실험적 연구)

  • Chang Tae-Hyun;Lee Hae Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.38-46
    • /
    • 2003
  • An experimental investigation was performed to study the turbulent characteristics of swirling flow a 90$^{\circ}C$ circular tube for Re = 10,000, 15,000 and 20,000. 2D-PIV(Particle Image Velocimetry)technique was employed to measure the fluctuation velocity field. The results include spatial distributions of mean velocity vectors, turbulence intensity and turbulence kinetic energy. The axial and radial turbulence intensities, and kinetic energy profiles show double-peak structures in the inlet region of the 90 degree bend and the profiles are disappeared along the test tube with decaying the swirl intensity.

  • PDF