• Title/Summary/Keyword: Flow uniformity

Search Result 500, Processing Time 0.026 seconds

Three-Dimensional Fluid Flow Analysis of Automotive Carbon Canister for Reducing Evaporative Emissions (증발가스 배출물 억제를 위한 자동차용 캐니스터의 3차원 유동장 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.85-93
    • /
    • 2001
  • Minimized canister flow restriction and maximized flow uniformity are desired to maximize a purge capability. With the impending ORVR(On Board Refueling Vapor Recovery) systems, the reduction of restriction and increase of flow uniformity in a carbon canister becomes even more critical to meet the stringent regulation. In this study, three-dimensional numerical simulations have been performed to investigate the three-dimensional internal flow patterns in a carbon canister during purge. The effects of the declined angle of the purge pipe and the number of partitions on the pressure drop and purge efficiency in a carbon packed bed are examined. Results show that the purge efficiency and space velocity distribution are affected in the upstream region of 40% of total canister bed by porosity of carbon granule and angle of purge pipe. It is also found that the purge efficiency decreases with increasing the number of partitions.

  • PDF

Numerical Analysis for the Flow Uniformity in the LP-SCR Reactor (LP SCR 반응기 내 유동 균일도 개선을 위한 해석적 연구)

  • Um, Hyung Sik;Kim, Gun Ho;Kim, Dae Hee;Kim, Kyu Jong;Kim, Jung Rae
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.61-63
    • /
    • 2015
  • In the low pressure selective catalytic reduction (LP SCR) system, the uniformity of both ammonia concentration and exhaust gas flow at the SCR catalyst layer are important design factor for the efficient SCR-deNOx performance. According to the shape of the guide vane and static mixer, numerical simulations were conducted to analyze flow patterns and finally to find out the appropriate alternative for uniform flow at the front of catalyst in the real scale LP SCR reactor. The variations of gas velocity and ammonia concentration were quantitatively evaluated. Based on the present results, the shape was devised to satisfy the design criteria.

  • PDF

Flow Analysis of PM/NOX Reduction System for Emergency Generator (비상발전기용 PM/NOX 저감장치의 유동특성 연구)

  • Bang, Hyo-Won;Park, Gi-Young;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.26 no.4
    • /
    • pp.163-170
    • /
    • 2021
  • Emergency generators normally use diesel engines. The generators need to conduct weekly no-load operation inspections to ensure stable performance at emergency situations. In particular, the generators with large diesel engines mainly use rectangle type filter substrates. In order to minimize hazardous emissions generated by generators, optimizing the reduction efficiency through CFD analysis of flow characteristics of PM/NOX reduction system is important. In this study, we analyzed internal flow by CFD, which is difficult to confirm by experimental method. The main factors in our numerical study are the changes of flow uniformity and back pressure. Therefore, changes in flow characteristics were studied according to urea injector locations, selective catalyst reduction (SCR) diffuser angle, and filter porosity.

Exit Flow Measurements of a Centrifugal Pump Impeller

  • Hong, Soon-Sam;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1147-1155
    • /
    • 2002
  • Discharge flows from a centrifugal pump impeller with a specific speed of 150 [rpm, m$^3$/min, m] were experimentally investigated. A large axisymmetric collector instead of a volute casing was installed to obtain circumferentially uniform flow, i.e. without interaction of the impeller and the volute. The unsteady flow was measured at the impeller exit and vaneless diffuser using a hot film probe and a pressure transducer. The flow at impeller exit showed pronounced jet-wake flow patterns. The wake, which was on the suction/hub side at high flow rate, became enlarged pitchwisely on both the hub and the shroud side as the flow rate decreases. The pitchwise non-uniformity of the flow rapidly decreased along the downstream and the non-uniformity almost disappeared at radius ratio of 1.18 for medium flow rate. The mean vaneless diffuser flow was reasonably predicted using a one dimensional analysis when an empirical constant was used to specify the skin friction coefficient. The data can be used for a centrifugal pump impeller design and validation of CFD codes and flow modeling.

A Study of Measurement and Analysis of Flow Distribution in a Close-Coupled Catalytic Converter (근접장착식 촉매장치의 유동분포 측정 및 해석에 관한 연구)

  • Jo, Yong-Seok;Kim, Deuk-Sang;Ju, Yeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.533-539
    • /
    • 2001
  • In this study, results from an experimental and numerical study of flow distribution in a close-coupled catalytic converter (CCC) are presented. The experiments were carried out using a glow measurement system. Flow distribution at the exit of the first monolith in the CCC was measured using a pitot tube under steady and transient flow conditions. Numerical analysis was done using a CF D code at the same test conditions, and the results were compared with the experimental results. Experimental results showed that the uniformity index of exhaust gas velocity decreases as Reynolds number increases. Under the steady flow conditions, flow through each exhaust pipe concentrates on a small region of the monolith. Under the transient flow conditions, flow through each exhaust pipe with the engine firing order interacts with each other to spread the flow over the monolith face. The numerical analysis results support the experimental results, and help explain the flow pattern in the entry region of the CCC.

Numerical Study on the Effect of Exhaust Flow Pattern under Real Running Condition on the Performance and Reliability of Closed-Coupled Catalyst (실 운전조건에서의 배기유동패턴이 근접장착 촉매변환기의 성능 및 신뢰성에 미치는 영향에 관한 수치적 연구)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.54-61
    • /
    • 2004
  • The engine-out flow is highly transient and hot, and may place tremendous thermal and inertial loads on a closed-coupled catalyst. Therefore, time-dependent and detailed flow and thermal field simulation may be crucial. The aim of this study is to develop combined chemical reaction and multi-dimensional fluid dynamic mathematical model and to study the effect of unsteady pulsating thermal and flow characteristics on thermal reliability of closed-coupled catalyst. The effect of cell density on the conversion performance under real running condition is also investigated. Unlike previous studies, the present study focuses on coupling between the problems of pulsating flow pattern and catalyst thermal response and conversion efficiency. The results are expressed in terms of temporal evolution of flow, pollutant and temperature distribution as well as transient characteristics of conversion efficiency. Fundamental understanding of the flow and thermal phenomena of closed-coupled catalyst under real running condition is presented. It is shown that instants of significantly low values of flow uniformity and conversion efficiency exist during exhaust blowdown and the temporal varaition of flow uniformity is very similar in pattern to one of conversion efficiency. It is also found that the location of hot spot in monolith is directly affected by transient flow pattern in closed-coupled catalyst.

EXPERIMENTAL APPROACH FOR EVALUATING EXHAUST FLOW DISTRIBUTION FOR PZEV EXHAUST MANIFOLDS USING A SIMULATED DYNAMIC FLOW BENCH

  • Hwang, I.G.;Myung, C.L.;Kim, H.S.;Park, S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.575-581
    • /
    • 2007
  • As current and future automobile emission regulations become more stringent, the research on flow distribution for an exhaust manifold and close-coupled catalyst(CCC) has become an interesting and remarkable subjects. The design of a CCC and exhaust manifold is a formidable task due to the complexity of the flow distribution caused by the pulsating flows from piston motion and engine combustion. Transient flow at the exhaust manifold can be analyzed with various computational fluid dynamics(CFD) tools. However, the results of such simulations must be verified with appropriate experimental data from real engine operating condition. In this study, an experimental approach was performed to investigate the flow distribution of exhaust gases for conventional cast types and stainless steel bending types of a four-cylinder engine. The pressure distribution of each exhaust sub-component was measured using a simulated dynamic flow bench and five-hole pitot probe. Moreover, using the results of the pitot tube measurement at the exit of the CCC, the flow distribution for two types of manifolds(cast type and bending type) was compared in terms of flow uniformity. Based on these experimental techniques, this study can be highly applicable to the design and optimization of exhaust for the better use of catalytic converters to meet the PZEV emission regulation.

The Inlet Shape Optimization of Aftertreatment System for Diesel Engine with Taguchi Method (다꾸치 방법을 이용한 디젤엔진용 후처리시스템의 입구부 형상 최적화)

  • Jung, Jong-Hwa;Kim, Jong-Hag;Kim, Sang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.145-151
    • /
    • 2012
  • New design of catalytic converter is proposed by optimization of DFSS (Design For Six Sigma) and DOE (Design Of Experiment) method which is based on taguchi matrix. As a result of the optimization of design of catalytic converter, this paper classifies Exhaust-downpipe shapes with 3 parameters to increase flow velocity uniformity of front catalytic substrate face from CFD results. after finishing with L9 Taguchi test matrix, it can be found the main effect of each design parameter of concept model, and optimal design level. in conclusion, it can be increase flow uniformity from 0.60 upto 0.80 with optimal diffuser shape for Turbo-charger.

Study of Characteristics Variation of Etching according to Gas Flow in Poly-Si Dry Etching using ICP Poly Etcher (ICP Poly Etcher를 이용한 Poly-Si Dry Etch시 Gas Flow에 따른 Etching 특성 변화 연구)

  • Kim, Dong-Il;Han, Seung-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.180-181
    • /
    • 2015
  • 본 논문에서는 ICP Poly Etcher를 이용한 Dry Etch에서 몇가지 공정조건의 변화에 따른 Etching 특성 변화를 연구하였다. 주요 가스유량들이 증가 할 때, Poly-Si 의 Etch rate는 증가 하였으며 Uniformity는 나빠진 것을 확인 할 수 있었고 다른 특성들은 특별한 변화를 보이지 않았다. 주요 Gas인 HBr의 증가는 PR(Photo Resist)와 Uniformity에 영향을 주었다. 이 논문을 통해 HBr의 유량이 Poly-Si Etching에 영향을 주는 결과를 알아 볼 수 있었고 HBr 가스의 유량 증가가 Polymer의 생성에 영향을 줘 Selectivity와 Uniformity를 증가 시킨다는 것도 확인 해 볼 수 있었다.

  • PDF

Characterization of via etch by enhanced reactive ion etching

  • Bae, Y.G.;Park, C.S.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.236-243
    • /
    • 2004
  • The oxide etching process was characterized in a magnetically enhanced reactive ion etching (MERIE) reactor with a $CHF_3CF_4$ gas chemistry. A statistical experimental design plus one center point was used to characterize relationships between process factors and etch response. The etch response modeled are etch rate, etch selectivity to TiN and uniformity. Etching uniformity was improved with increasing $CF_4$ flow ratio, increasing source power, and increasing pressure depending on source power. Characterization of via etching in $CHF_3CF_4$ MERIE using neural networks was successfully executed giving to highly valuable information about etching mechanism and optimum etching condition. It was found that etching uniformity was closely related to surface polymerization, DC bias, TiN and uniformity.