• Title/Summary/Keyword: Flow state

Search Result 3,205, Processing Time 0.032 seconds

Analysis on the Flow Effect of the Twisted Nematic liquid Crystals (Twisted Nematic(TN) 액정에서의 흐름효과 해석)

  • Kim, Hoon;Park, Woo-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.76-78
    • /
    • 2005
  • We coupled fluid balance equation and director balance equation from Ericksen-Leslie's continuum theory and observed the motion of Twisted Nematic (TN) Liquid Crystals. We simulated flow velocity distribution and director distribution. We interpreted the dynamic response characteristic caused by the flow. As the result of the simulation, We could see the flow effect. And this flow caused abnormal twist to 4msec in switching off state. We could prove that this abnormal twist is a direct cause of optical bounce phenomenon known well until now with the result of simulation.

  • PDF

CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements

  • Kuai, Le;Haan, Fred L. Jr.;Gallus, William A. Jr.;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.75-96
    • /
    • 2008
  • A better understanding of tornado-induced wind loads is needed to improve the design of typical structures to resist these winds. An accurate understanding of the loads requires knowledge of near-ground tornado winds, but observations in this region are lacking. The first goal of this study was to verify how well a CFD model, when driven by far field radar observations and laboratory measurements, could capture the flow characteristics of both full scale and laboratory-simulated tornadoes. A second goal was to use the model to examine the sensitivity of the simulations to various parameters that might affect the laboratory simulator tornado. An understanding of near-ground winds in tornadoes will require coordinated efforts in both computational and physical simulation. The sensitivity of computational simulations of a tornado to geometric parameters and surface roughness within a domain based on the Iowa State University laboratory tornado simulator was investigated. In this study, CFD simulations of the flow field in a model domain that represents a laboratory tornado simulator were conducted using Doppler radar and laboratory velocity measurements as boundary conditions. The tornado was found to be sensitive to a variety of geometric parameters used in the numerical model. Increased surface roughness was found to reduce the tangential speed in the vortex near the ground and enlarge the core radius of the vortex. The core radius was a function of the swirl ratio while the peak tangential flow was a function of the magnitude of the total inflow velocity. The CFD simulations showed that it is possible to numerically simulate the surface winds of a tornado and control certain parameters of the laboratory simulator to influence the tornado characteristics of interest to engineers and match those of the field.

Experimental Study of Natural Convectiion Heat Transfer from a Horizontal Ice Cylinder Immersed in Cold Pure Water (저온의 순수물속에 잠겨있는 수평 얼음원기둥에 의해 야기되는 자연대류 열전달의 실험적 해석)

  • 유갑종;추홍록;문종훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1019-1030
    • /
    • 1994
  • Natural convection heat transfer from a horizontal ice cylinder immersed in quiescent cold pure water was studied experimentally. The experiment was conducted for the ambient water temperatures ranging from $2.0^{\cric}C$ to $10.0^{\circ}C$. The flow fields around an ice cylinder and its melting shapes were visualized and local Nusselt numbers obtained. Especially, its attention was focused on the density maximum effects and stagnation point Nusselt number. From the visualized photographs of flow fields, three distinct flow patterns were observed with the ambient water temperature variation. The melting shapes of ice cylinder are various in shape with flow patterns. Steady state upflow was occured at the range of $2.0^{\circ}C \leq T_{\infty} \leq 4.6^{\circ}C$ and steady state downflow was occured at $T_{\infty} \geq 6.0^{\circ}C$. In the range of $4.7^{\circ}C < T_{\infty} < 6.0^{\circ}C$, three-dimensional unsteady state flow was observed. Especially, the melting shapes of ice cylinder have formed the several spiral flutes for the temperatures ranging from $5.5^{\circ}C$ to $5.8^{\circ}C$. For upflow regime, the maximum stagnation point Nusselt number exists at $T_{\infty} = 2.5^{\circ}C$ and as the ambient water temperature increases the Nusselt number decreases. At ambient water temperature of about $5.7^{\circ}C$, Nusselt number shows its minimum value.

Intake-Air Flow and Distribution Characteristics of the Gasoline Engine Intake-Manifold (가솔린엔진 흡기매니폴드의 흡기유량 및 분배특성)

  • Yeom, Kyoung-Min;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4718-4725
    • /
    • 2011
  • Intake-air flow and distribution characteristics of the 1600cc gasoline engine intake manifold have been studied using the computer simulation. Simulation has been conducted using both one-dimensional performance simulation and three-dimensional CFD software. Steady state flow simulation result of the intake manifold shows good distribution characteristics that the standard deviation of flow coefficients is below 1.0 percentage for both one- and three-dimensional simulation. Even though one-dimensional simulation result slightly overestimates compared with three-dimensional simulation result, both results show very good agreement in flow coefficient trend. Also, unsteady state simulation result shows consistent distribution characteristics with that of steady state. It is shown that unsteady state distribution characteristics might be able to be predicted through the steady state mass distribution result.

Performance analysis of automatic depressurization system in advanced PWR during a typical SBLOCA transient using MIDAC

  • Sun, Hongping;Zhang, Yapei;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.937-946
    • /
    • 2020
  • The aim in the present work is to simulate accident scenarios of AP1000 during the small-break loss-of-coolant accident (SBLOCA) and investigate the performance and behavior of automatic depressurization system (ADS) during accidents by using MIDAC (The Module In-vessel Degradation severe accident Analysis Code). Four types of accidents with different hypothetical conditions were analyzed in this study. The impact on the thermal-hydraulic of the reactor coolant system (RCS), the passive core cooling system and core degradation was researched by comparing these types. The results show that the RCS depressurization becomes faster, the core makeup tanks (CMT) and accumulators (ACC) are activated earlier and the effect of gravity water injection is more obvious along with more ADS valves open. The open of the only ADS1-3 can't stop the core degradation on the basis of the first type of the accident. The open of ADS1-3 has a great impact on the injection time of ACC and CMT. The core can remain intact for a long time and the core degradation can be prevent by the open of ADS-4. The all results are significant and meaningful to understand the performance and behavior of the ADS during the typical SBLOCA.

Transient heat transfer and crust evolution during debris bed melting process in the hypothetical severe accident of HPR1000

  • Chao Lv;Gen Li;Jinchen Gao;Jinshi Wang;Junjie Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3017-3029
    • /
    • 2023
  • In the late in-vessel phase of a nuclear reactor severe accident, the internal heat transfer and crust evolution during the debris bed melting process have important effects on the thermal load distribution along the vessel wall, and further affect the reactor pressure vessel (RPV) failure mode and the state of melt during leakage. This study coupled the phase change model and large eddy simulation to investigate the variations of the temperature, melt liquid fraction, crust and heat flux distributions during the debris bed melting process in the hypothetical severe accident of HPR1000. The results indicated that the heat flow towards the vessel wall and upper surface were similar at the beginning stage of debris melting, but the upward heat flow increased significantly as the development of the molten pool. The maximum heat flux towards the vessel wall reached 0.4 MW/m2. The thickness of lower crust decreased as the debris melting. It was much thicker at the bottom region with the azimuthal angle below 20° and decreased rapidly at the azimuthal angle around 20-50°. The maximum and minimum thicknesses were 2 and 90 mm, respectively. By contrast, the distribution of upper crust was uniform and reached stable state much earlier than the lower crust, with the thickness of about 10 mm. Moreover, the sensitivity analysis of initial condition indicated that as the decrease of time interval from reactor scram to debris bed dried-out, the maximum debris temperature and melt fraction became larger, the lower crust thickness became thinner, but the upper crust had no significant change. The sensitivity analysis of in-vessel retention (IVR) strategies indicated that the passive and active external reactor vessel cooling (ERVC) had little effect on the internal heat transfer and crust evolution. In the case not considering the internal reactor vessel cooling (IRVC), the upper crust was not obvious.

Enhancing Customer Loyalty in E-Commerce: The Role of Personalization Recommendation Systems and Flow State

  • Ming-ming Lin;Yu-min Jeong;Yu-dong Zhang;Zi-yang Liu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.223-233
    • /
    • 2024
  • This study investigates the impact of personalization recommendation systems on customer loyalty in e-commerce, focusing on the role of information presentation, system interaction, and social community functions. It examines how these elements influence flow state, word of mouth (WOM), and repurchase intention (RPI). Using structural equation modeling (SEM) and data collected from 500 respondents in SPSS and AMOS, the study finds that all three personalization aspects significantly enhance flow state, which, in turn, positively affects WOM and RPI. System interaction directly boosts both WOM and RPI, while information presentation and social community functions influence only one of these loyalty measures. Flow state mediates the relationship between personalization factors and loyalty outcomes. These findings suggest e-commerce platforms should enhance system interaction and embed social community features to foster customer loyalty.

Cavitation in a Shaft-less Double Suction Centrifugal Miniature Pump

  • Zhuang, Baotang;Luo, Xianwu;Zhu, Lei;Wang, Xin;Xu, Hongyuan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.191-198
    • /
    • 2011
  • Based on the consideration that the cavitation would affect the operation stability of miniature pumps, the 3-D turbulent cavitating flow in a test pump was simulated by using a mixed cavitation model and k-${\omega}$ SST turbulence model. In order to investigate the influence of inlet geometry parameters on the cavitation performance of the miniature pump, two more impellers are designed for comparison. Based on the results, the following conclusions are drawn: 1) Cavitation performance of the double suction shaft-less miniature pump having different impeller is equivalent to the centrifugal pump having ordinary size, though the flow passage at impeller inlet is small; 2) The miniature pump having radial impeller can produce much higher pump head, but lower cavitation performance than that having the impeller based on the conventional design method; 3) It is believed that by applying the double suction design, the miniature pump achieved relatively uniform flow pattern upstream the impeller inlet, which is favorable for improving cavitation performance.

Numerical Simulation of Water Table Drawdown due to Groundwater Pumping in a Contaminated Aquifer System at a Shooting Test Site, Pocheon, Korea

  • Kihm, Jung-Hwi;Hwang, Gisub
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.247-257
    • /
    • 2021
  • The study area has been contaminated with explosive materials and heavy metals for several decades. For the design of the pump and treat remediation method, groundwater flow before and during groundwater pumping in a contaminated aquifer system was simulated, calibrated, and predicted using a generalized multidimensional hydrological numerical model. A three-dimensional geologic formation model representing the geology, hydrogeology, and topography of the aquifer system was established. A steady-state numerical simulation with model calibration was performed to obtain initial steady-state spatial distributions of groundwater flow and groundwater table in the aquifer system before groundwater pumping, and its results were illustrated and analyzed. A series of transient-state numerical simulations were then performed during groundwater pumping with the four different pumping rates at a potential location of the pumping well. Its results are illustrated and analyzed to provide primary reference data for the pump and treat remediation method. The results of both steady-state and transient-state numerical simulations show that the spatial distribution and properties of the geologic media and the topography have significant effects on the groundwater flow and thus depression zone.

The Variation of the Residual Chlorine Concentration in a Distribution Reservoir (유출량 변동에 따른 모형배수지내 잔류염소농도의 변화)

  • Lee, Sang-Jun;Hyeon, In-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.725-733
    • /
    • 2001
  • In this study, variation of effluent of residual chlorine concentration was estimated from bench scale distribution reservoir test according to variation of flow and baffle condition. According to the bench scale test results, when the flow rate was an unsteady state, difference between the case of no-baffle in the reservoir and the case of two-baffles in the reservoir became less than the condition when the effluent flow was in a steady state. Consequently, the results are caused by the flow rate variation. Thus, the baffle is less effective than a clearwell of steady state condition.

  • PDF